Термомеханічні властивості композицій на основі поліаміду-6, одержаних з розчину

dc.citation.epage198
dc.citation.issue1
dc.citation.spage193
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБратичак, М. М.
dc.contributor.authorКрасінський, В. В.
dc.contributor.authorЧопик, Н. В.
dc.contributor.authorЗемке, В. М.
dc.contributor.authorBratychak, M. M.
dc.contributor.authorKrasinskyi, V. V.
dc.contributor.authorChopyk, N. V.
dc.contributor.authorZemke, V. M.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:51Z
dc.date.available2024-01-22T09:22:51Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractЗдійснено термомеханічні дослідження композицій поліаміду-6, модифікованого монтморилоніт – полівінілпіролідоновою сумішшю (МПС). Нанокомпозити поліаміду-6 одержано методом осадження із розчину. Досліджено вплив умов отримання нанокомпозитів на морфологічні особливості полімерних сумішей. Встановлення термомеханічних властивостей дає можливість визначити оптимальний вміст МПС у сумішах поліаміду-6. Наведено результати досліджень теплофізичних властивостей нанокомпозитів поліаміду-6, які характеризуються високим значенням показника теплостійкості за Віка.
dc.description.abstractThermomechanical studies of polamide-6 compositions, modified with (MPM) montmorillonitepolyvinylpyrrolidone mixture, were performed. Polyamide-6 nanocomposites were obtained by the solution deposition. The influence of nanocomposite production conditions on morphological features of polymer blends were researched. Determination of thermomechanical properties makes it possible to define the optimal content of MPM in polyamide-6 blends.
dc.format.extent193-198
dc.format.pages6
dc.identifier.citationТермомеханічні властивості композицій на основі поліаміду-6, одержаних з розчину / М. М. Братичак, В. В. Красінський, Н. В. Чопик, В. М. Земке // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 193–198.
dc.identifier.citationenThermomechanical properties of compositions based on polyamide-6, obtained from the solution / M. M. Bratychak, V. V. Krasinskyi, N. V. Chopyk, V. M. Zemke // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 193–198.
dc.identifier.doidoi.org/10.23939/ctas2022.01.193
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60931
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Gavryliuk, N. A., Prychodiko, G. P., Kartel, M. T. (2014). Oderzhannya ta vlastivosti nanokompozytiv na osnovi termoplastychnych polimeriv, napovnenych vuglecevymy nanotrubkamy. Poverchnost, 6(21), 206–240. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv.
dc.relation.references2. Suhyi, K. M. (2013). Technologia oderzhannya nanokompozytiv na osnovi poliamidu I organomodyphikovanogo montmorylonitu. Voprosu himii i himichnych technologii, 5, 44–50. https://udhtu.edu.ua/public/userfiles/file/VHHT/2013/5/Sukhyy%202.pdf.
dc.relation.references3.Wang, Z., Pinnavaia, T. J. (1998). Nanolayer reinforcement of elastomeric polyurethane. Chem. Mater., 10, 7, 1820–1826. https://pubs.acs.org/doi/full/10.1021/cm980448n.
dc.relation.references4. Garcia, Lopez D., Gobernado-Mitrel, Fernandez, J. F., Merino, J. C., Pastor, J. M. (2009). Properties of polyamide 6/clay nanocomposites processed by low cost bentonite and different organic modifiers. Polymer Bull., 62(6), 2493–2498. https://ur.booksc.me/book/7506240/3827f1.
dc.relation.references5. Wang, Z.; Pinnavaia, T. J. (1998) Nanolayer Reinforcement of Elastomeric Polyurethane. Chem. Mater., 10 (12), 3769–3771. https://pubs.acs.org/doi/full/10.1021/cm980448n.
dc.relation.references6. Burnside, S. D., Giannelis, E. P. (1995). Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater., 7(9), 1597–1600. https://pubs.acs.org/doi/pdf/10.1021/cm00057a001.
dc.relation.references7. Vaia, R. A., Giannelis, E. P. (1997). Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules, 30(25), 8000–8009. https://pubs.acs.org/doi/abs/10.1021/ma9603488.
dc.relation.references8. Chang, K.-C., Chen, S.-T., Lin, H.-F., Lin, C.-Y., Huang, H.-H., Yeh, J.-M., Yu, Y.-H. (2008). The development of anthracene derivatives for organic light-emitting diodes. Eur. Polymer J., 44(1), 13–23. https://pubs.rsc.org/en/content/articlelanding/2012/JM/C2JM16855C.
dc.relation.references9. Jia, Q., Zheng, M., Shen, R., Chen, H.(2006). Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. Chinese Sci. Bull, 51(3), 293–298. https://www.sciencedirect.com/science/article/abs/pii/S001430570600365X.
dc.relation.references10. Krasinskyi, V., Suberlyak, O., Klym, Y. (2016). Operational properties of nanocomposites based on polycaproamide and modified montmorillonite. Acta Mechanica Slovaca, 20(1), 52–55. https://www.actamechanica.sk/artkey/ams-201601-0008.
dc.relation.references11. Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., Pankiv, M. O. (2021). Otrymannya nanokompozytiv na osnovi montmorylonitu ta poliamidu v rozchyni. Chemistry, technology and application of substances, Bulletin of the National University Lviv Polytechni, 4(1), 172–178. https://doi.org/10.23939/ctas2021.01.172.
dc.relation.references12. Mishurov, D. О., Avramenko, V. L., Brovko, О. О. (2013). Nanokompozyty na osnovi polimeriv i sharuvatych sylikativ. Polimernyi zhurnal, 35(3), 217–230. http://gntb.gov.ua/files/vv/nanot13_2.pdf.
dc.relation.references13. Suberlyak, О. V., Baran, N. M., Yatsulchak, G. V. (2017). Phizyko-mechanichni vlastyvosti plivok na osnovi sumishej poliamidu z polivinilpirolidonom. Phizykohimichna mechanika materialiv, 53(3), 93–97. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.
dc.relation.references14.Krasinskyi, V., Suberlyak, O., Kochubei, V., Jachowicz, T., Dulebova, L., Zemke, V. (2020). Nanocomposites based on polyamide and montmorillonite obtained from a solution. Advances in Science and Technology Research Journal, 14(3), 192–198. http://www.astrj.com.
dc.relation.references15. ISO 306:2004. Plastics. Thermoplastic materials determination of Vicat softening temperature (VST), 1991, 8. https://docs.cntd.ru/document/1200110856.
dc.relation.references16. Krasinskyi, V., Suberlyak, O., Sikora, J., Zemke, V. (2021) Nanocomposites based on polyamide-6 and montmorillonite intercalated with polyvinylpyrrolidone. Polymer-Plastics Technology and Materials. https://www.tandfonline.com/doi/full/10.1080/25740881.2021.1924201.
dc.relation.references17. Levytskyi, V. Ye., Tarnavskyi, A. B., Suberlyak, O. V. (2004). Termomechanichni vlastyvosti sumishei poliamid-polivinilpirolidon. Chemistry, technology and application of substances, 497, 141–143. https://ena.lpnu.ua/handle/ntb/12005.
dc.relation.references18. Levytskyi, V., Masyuk, A., Katruk, D., Kuziola, R., Bratychak, M. jr., Chopyk, N., Khromyak, U. (2020). Influence of polymer-silicate nucleator on the structure and properties of polyamide 6. Chemistry & Chemical Technology, 14(4), 496–503. https://science2016.lp.edu.ua.
dc.relation.referencesen1. Gavryliuk, N. A., Prychodiko, G. P., Kartel, M. T. (2014). Oderzhannya ta vlastivosti nanokompozytiv na osnovi termoplastychnych polimeriv, napovnenych vuglecevymy nanotrubkamy. Poverchnost, 6(21), 206–240. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv.
dc.relation.referencesen2. Suhyi, K. M. (2013). Technologia oderzhannya nanokompozytiv na osnovi poliamidu I organomodyphikovanogo montmorylonitu. Voprosu himii i himichnych technologii, 5, 44–50. https://udhtu.edu.ua/public/userfiles/file/VHHT/2013/5/Sukhyy%202.pdf.
dc.relation.referencesen3.Wang, Z., Pinnavaia, T. J. (1998). Nanolayer reinforcement of elastomeric polyurethane. Chem. Mater., 10, 7, 1820–1826. https://pubs.acs.org/doi/full/10.1021/cm980448n.
dc.relation.referencesen4. Garcia, Lopez D., Gobernado-Mitrel, Fernandez, J. F., Merino, J. C., Pastor, J. M. (2009). Properties of polyamide 6/clay nanocomposites processed by low cost bentonite and different organic modifiers. Polymer Bull., 62(6), 2493–2498. https://ur.booksc.me/book/7506240/3827f1.
dc.relation.referencesen5. Wang, Z.; Pinnavaia, T. J. (1998) Nanolayer Reinforcement of Elastomeric Polyurethane. Chem. Mater., 10 (12), 3769–3771. https://pubs.acs.org/doi/full/10.1021/cm980448n.
dc.relation.referencesen6. Burnside, S. D., Giannelis, E. P. (1995). Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem. Mater., 7(9), 1597–1600. https://pubs.acs.org/doi/pdf/10.1021/cm00057a001.
dc.relation.referencesen7. Vaia, R. A., Giannelis, E. P. (1997). Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment. Macromolecules, 30(25), 8000–8009. https://pubs.acs.org/doi/abs/10.1021/ma9603488.
dc.relation.referencesen8. Chang, K.-C., Chen, S.-T., Lin, H.-F., Lin, C.-Y., Huang, H.-H., Yeh, J.-M., Yu, Y.-H. (2008). The development of anthracene derivatives for organic light-emitting diodes. Eur. Polymer J., 44(1), 13–23. https://pubs.rsc.org/en/content/articlelanding/2012/JM/P.2JM16855C.
dc.relation.referencesen9. Jia, Q., Zheng, M., Shen, R., Chen, H.(2006). Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. Chinese Sci. Bull, 51(3), 293–298. https://www.sciencedirect.com/science/article/abs/pii/S001430570600365X.
dc.relation.referencesen10. Krasinskyi, V., Suberlyak, O., Klym, Y. (2016). Operational properties of nanocomposites based on polycaproamide and modified montmorillonite. Acta Mechanica Slovaca, 20(1), 52–55. https://www.actamechanica.sk/artkey/ams-201601-0008.
dc.relation.referencesen11. Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., Pankiv, M. O. (2021). Otrymannya nanokompozytiv na osnovi montmorylonitu ta poliamidu v rozchyni. Chemistry, technology and application of substances, Bulletin of the National University Lviv Polytechni, 4(1), 172–178. https://doi.org/10.23939/ctas2021.01.172.
dc.relation.referencesen12. Mishurov, D. O., Avramenko, V. L., Brovko, O. O. (2013). Nanokompozyty na osnovi polimeriv i sharuvatych sylikativ. Polimernyi zhurnal, 35(3), 217–230. http://gntb.gov.ua/files/vv/nanot13_2.pdf.
dc.relation.referencesen13. Suberlyak, O. V., Baran, N. M., Yatsulchak, G. V. (2017). Phizyko-mechanichni vlastyvosti plivok na osnovi sumishej poliamidu z polivinilpirolidonom. Phizykohimichna mechanika materialiv, 53(3), 93–97. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.
dc.relation.referencesen14.Krasinskyi, V., Suberlyak, O., Kochubei, V., Jachowicz, T., Dulebova, L., Zemke, V. (2020). Nanocomposites based on polyamide and montmorillonite obtained from a solution. Advances in Science and Technology Research Journal, 14(3), 192–198. http://www.astrj.com.
dc.relation.referencesen15. ISO 306:2004. Plastics. Thermoplastic materials determination of Vicat softening temperature (VST), 1991, 8. https://docs.cntd.ru/document/1200110856.
dc.relation.referencesen16. Krasinskyi, V., Suberlyak, O., Sikora, J., Zemke, V. (2021) Nanocomposites based on polyamide-6 and montmorillonite intercalated with polyvinylpyrrolidone. Polymer-Plastics Technology and Materials. https://www.tandfonline.com/doi/full/10.1080/25740881.2021.1924201.
dc.relation.referencesen17. Levytskyi, V. Ye., Tarnavskyi, A. B., Suberlyak, O. V. (2004). Termomechanichni vlastyvosti sumishei poliamid-polivinilpirolidon. Chemistry, technology and application of substances, 497, 141–143. https://ena.lpnu.ua/handle/ntb/12005.
dc.relation.referencesen18. Levytskyi, V., Masyuk, A., Katruk, D., Kuziola, R., Bratychak, M. jr., Chopyk, N., Khromyak, U. (2020). Influence of polymer-silicate nucleator on the structure and properties of polyamide 6. Chemistry & Chemical Technology, 14(4), 496–503. https://science2016.lp.edu.ua.
dc.relation.urihttp://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv
dc.relation.urihttps://udhtu.edu.ua/public/userfiles/file/VHHT/2013/5/Sukhyy%202.pdf
dc.relation.urihttps://pubs.acs.org/doi/full/10.1021/cm980448n
dc.relation.urihttps://ur.booksc.me/book/7506240/3827f1
dc.relation.urihttps://pubs.acs.org/doi/pdf/10.1021/cm00057a001
dc.relation.urihttps://pubs.acs.org/doi/abs/10.1021/ma9603488
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2012/JM/C2JM16855C
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S001430570600365X
dc.relation.urihttps://www.actamechanica.sk/artkey/ams-201601-0008
dc.relation.urihttps://doi.org/10.23939/ctas2021.01.172
dc.relation.urihttp://gntb.gov.ua/files/vv/nanot13_2.pdf
dc.relation.urihttp://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64
dc.relation.urihttp://www.astrj.com
dc.relation.urihttps://docs.cntd.ru/document/1200110856
dc.relation.urihttps://www.tandfonline.com/doi/full/10.1080/25740881.2021.1924201
dc.relation.urihttps://ena.lpnu.ua/handle/ntb/12005
dc.relation.urihttps://science2016.lp.edu.ua
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполіамід-6
dc.subjectмурашина кислота
dc.subjectмонтморилоніт – полівінілпіролідонова суміш
dc.subjectнанокомпозит
dc.subjectосадження
dc.subjectтеплостійкість за Віка
dc.subjectpolyamide-6
dc.subjectformic acid
dc.subjectmontmorillonite-polyvinylpyrrolidone mixture
dc.subjectnanocomposite
dc.subjectthermomechanical curve
dc.subjectprecipitation from solution
dc.subjectVicat softening point
dc.titleТермомеханічні властивості композицій на основі поліаміду-6, одержаних з розчину
dc.title.alternativeThermomechanical properties of compositions based on polyamide-6, obtained from the solution
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v5n1_Bratychak_M_M-Thermomechanical_properties_193-198.pdf
Size:
700.59 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v5n1_Bratychak_M_M-Thermomechanical_properties_193-198__COVER.png
Size:
468.81 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: