Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid
| dc.citation.epage | 14 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 8 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Львівський національний університет ім. І. Франка | |
| dc.contributor.affiliation | Інститут проблем матеріалознавства ім. І. М. Францевича НАНУ | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Ivan Franko National University of Lviv | |
| dc.contributor.affiliation | Frantsevich Institute for Problems of Materials Science NASU | |
| dc.contributor.author | Шевченко, Д. С. | |
| dc.contributor.author | Горак, Ю. І. | |
| dc.contributor.author | Тищенко, Н. І. | |
| dc.contributor.author | Пишна, Д. Б. | |
| dc.contributor.author | Собечко, І. Б. | |
| dc.contributor.author | Shevchenko, D. S. | |
| dc.contributor.author | Horak, Y. I. | |
| dc.contributor.author | Tischenko, N. I. | |
| dc.contributor.author | Pyshna, D. B. | |
| dc.contributor.author | Sobechko, I. B. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:49Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Із використанням прецизійного обладнання експериментально визначено ентальпії випаровування, плавлення та утворення у конденсованому стані 3-(1,5-дифенілпірол-2-іл)- пропанової кислоти. Виконано розрахунок ентальпії сублімації за 298 К та ентальпії утворення в газоподібному стані. Наведено порівняльний аналіз експериментально визначених значень з теоретично розрахованими за адитивними методами розрахунку. | |
| dc.description.abstract | Using precision equipment, the enthalpies of vaporization, fusion and formation in the condensed state of 3-(1,5-diphenylpyrrol-2-yl)-propanoic acid were experimentally determined. The enthalpy of sublimation at 298 K and the enthalpy of formation in the gaseous state were calculated. A comparative analysis of the experimentally determined values with theoretically calculated values using additive calculation methods is given. | |
| dc.format.extent | 8-14 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid / D. S. Shevchenko, Y. I. Horak, N. I. Tischenko, D. B. Pyshna, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 8–14. | |
| dc.identifier.citationen | Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid / D. S. Shevchenko, Y. I. Horak, N. I. Tischenko, D. B. Pyshna, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 8–14. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.008 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111738 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Ribeiro da Silva, M. A., & Santos, A. F. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. The Journal of Physical Chemistry B, 114(8), 2846-2851. https://doi.org/10.1021/jp911323c | |
| dc.relation.references | 2. Santos, A. F., & Ribeiro da Silva, M. A. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. The Journal of Physical Chemistry A, 117(24), 5195-5204. https://doi.org/10.1021/jp4032628 | |
| dc.relation.references | 3. Santos, A. F., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1-7. https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.references | 4. Santos, A. F., & Ribeiro da Silva, M. A. V. (2010). A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441-1450. https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.references | 5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854 | |
| dc.relation.references | 6. Forouzesh, A., Samadi Foroushani, S., Forouzesh, F., & Zand, E. (2019). Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00835 | |
| dc.relation.references | 7. Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., & Tishchenko, N. (2020). Thermodynamic properties of 6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chemistry & Chemical Technology, 14(3), 277-283. https://doi.org/10.23939/chcht14.03.277 | |
| dc.relation.references | 8. Kostiuk, R. R., Horak, Y., Velychkivska, N., Sobechko, I. B., Pyshna, D. B., & Dibrivnyi, V. (2023). Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic. Chemistry, Technology and Application of Substances, 6(1), 8-14. https://doi.org/10.23939/ctas2023.01.008 | |
| dc.relation.references | 9. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30-36. https://doi.org/10.23939/ctas2022.02.030 | |
| dc.relation.references | 10.Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326. | |
| dc.relation.references | 11. Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku477 | |
| dc.relation.references | 12.Biological and bioorganic chemistry: textbook: in 2 books. Book 1. Bioorganic chemistry / B.S. Zimenkovskyi, V.A. Muzychenko, I.V. Nizhenkovska, G.O. Raw; under the editorship B.S. Zimenkovsky, I.V. Nizhenkovskaya. - 3rd edition. - K.: VSV "Medicine", 2022. - 272 p. [in Ukrainian] | |
| dc.relation.references | 13. http://www.codata.info/resources/databases/key1.html | |
| dc.relation.references | 14. Acree, W., & Chickos, J. S. (2016). Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. part 1. C1− C10. Journal of Physical and Chemical Reference Data, 45(3), 033101. https://doi.org/10.1063/1.4948363 | |
| dc.relation.references | 15.Benson, S. W. (1965). III - bond energies. Journal of Chemical Education, 42(9), 502. https://doi.org/10.1021/ed042p502 | |
| dc.relation.references | 16.Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805-1159. https://doi.org/10.1063/1.555927 | |
| dc.relation.references | 17.Cohen, N. (1996). Revised Group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(6), 1411-1481. https://doi.org/10.1063/1.555988 | |
| dc.relation.references | 18.Salmon, A., & Dalmazzone, D. (2007). Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions-part 2: Carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36(1), 19-58. https://doi.org/10.1063/1.2435401 | |
| dc.relation.referencesen | 1. Ribeiro da Silva, M. A., & Santos, A. F. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. The Journal of Physical Chemistry B, 114(8), 2846-2851. https://doi.org/10.1021/jp911323c | |
| dc.relation.referencesen | 2. Santos, A. F., & Ribeiro da Silva, M. A. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. The Journal of Physical Chemistry A, 117(24), 5195-5204. https://doi.org/10.1021/jp4032628 | |
| dc.relation.referencesen | 3. Santos, A. F., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1-7. https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.referencesen | 4. Santos, A. F., & Ribeiro da Silva, M. A. V. (2010). A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441-1450. https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.referencesen | 5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854 | |
| dc.relation.referencesen | 6. Forouzesh, A., Samadi Foroushani, S., Forouzesh, F., & Zand, E. (2019). Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00835 | |
| dc.relation.referencesen | 7. Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., & Tishchenko, N. (2020). Thermodynamic properties of 6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chemistry & Chemical Technology, 14(3), 277-283. https://doi.org/10.23939/chcht14.03.277 | |
| dc.relation.referencesen | 8. Kostiuk, R. R., Horak, Y., Velychkivska, N., Sobechko, I. B., Pyshna, D. B., & Dibrivnyi, V. (2023). Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic. Chemistry, Technology and Application of Substances, 6(1), 8-14. https://doi.org/10.23939/ctas2023.01.008 | |
| dc.relation.referencesen | 9. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30-36. https://doi.org/10.23939/ctas2022.02.030 | |
| dc.relation.referencesen | 10.Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326. | |
| dc.relation.referencesen | 11. Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku477 | |
| dc.relation.referencesen | 12.Biological and bioorganic chemistry: textbook: in 2 books. Book 1. Bioorganic chemistry, B.S. Zimenkovskyi, V.A. Muzychenko, I.V. Nizhenkovska, G.O. Raw; under the editorship B.S. Zimenkovsky, I.V. Nizhenkovskaya, 3rd edition, K., VSV "Medicine", 2022, 272 p. [in Ukrainian] | |
| dc.relation.referencesen | 13. http://www.codata.info/resources/databases/key1.html | |
| dc.relation.referencesen | 14. Acree, W., & Chickos, J. S. (2016). Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. part 1. P.1− P.10. Journal of Physical and Chemical Reference Data, 45(3), 033101. https://doi.org/10.1063/1.4948363 | |
| dc.relation.referencesen | 15.Benson, S. W. (1965). III - bond energies. Journal of Chemical Education, 42(9), 502. https://doi.org/10.1021/ed042p502 | |
| dc.relation.referencesen | 16.Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805-1159. https://doi.org/10.1063/1.555927 | |
| dc.relation.referencesen | 17.Cohen, N. (1996). Revised Group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(6), 1411-1481. https://doi.org/10.1063/1.555988 | |
| dc.relation.referencesen | 18.Salmon, A., & Dalmazzone, D. (2007). Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions-part 2: Carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36(1), 19-58. https://doi.org/10.1063/1.2435401 | |
| dc.relation.uri | https://doi.org/10.1021/jp911323c | |
| dc.relation.uri | https://doi.org/10.1021/jp4032628 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2014.04.003 | |
| dc.relation.uri | https://doi.org/10.1016/j.jct.2010.06.012 | |
| dc.relation.uri | https://doi.org/10.3390/ijms23168854 | |
| dc.relation.uri | https://doi.org/10.3389/fphar.2019.00835 | |
| dc.relation.uri | https://doi.org/10.23939/chcht14.03.277 | |
| dc.relation.uri | https://doi.org/10.23939/ctas2023.01.008 | |
| dc.relation.uri | https://doi.org/10.23939/ctas2022.02.030 | |
| dc.relation.uri | https://doi.org/10.1093/nar/gku477 | |
| dc.relation.uri | http://www.codata.info/resources/databases/key1.html | |
| dc.relation.uri | https://doi.org/10.1063/1.4948363 | |
| dc.relation.uri | https://doi.org/10.1021/ed042p502 | |
| dc.relation.uri | https://doi.org/10.1063/1.555927 | |
| dc.relation.uri | https://doi.org/10.1063/1.555988 | |
| dc.relation.uri | https://doi.org/10.1063/1.2435401 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | енергія згоряння | |
| dc.subject | ентальпія згоряння | |
| dc.subject | ентальпія утворення | |
| dc.subject | ентальпія випаровування | |
| dc.subject | ентальпія плавлення | |
| dc.subject | 3-(1 | |
| dc.subject | 5-дифенілпірол-2-іл)-пропанова кислота | |
| dc.subject | combustion energy | |
| dc.subject | enthalpy of combustion | |
| dc.subject | enthalpy of formation | |
| dc.subject | enthalpy of vaporization | |
| dc.subject | enthalpy of fusion | |
| dc.subject | 3-(1 | |
| dc.subject | 5-diphenylpyrrol-2-yl)-propanoic acid | |
| dc.title | Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid | |
| dc.title.alternative | Термодинамічні властивості 3-(1,5-дифенілпірол-2-іл) пропанової кислоти | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1