Thermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid

dc.citation.epage14
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage8
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет ім. І. Франка
dc.contributor.affiliationІнститут проблем матеріалознавства ім. І. М. Францевича НАНУ
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.affiliationFrantsevich Institute for Problems of Materials Science NASU
dc.contributor.authorШевченко, Д. С.
dc.contributor.authorГорак, Ю. І.
dc.contributor.authorТищенко, Н. І.
dc.contributor.authorПишна, Д. Б.
dc.contributor.authorСобечко, І. Б.
dc.contributor.authorShevchenko, D. S.
dc.contributor.authorHorak, Y. I.
dc.contributor.authorTischenko, N. I.
dc.contributor.authorPyshna, D. B.
dc.contributor.authorSobechko, I. B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:49Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractІз використанням прецизійного обладнання експериментально визначено ентальпії випаровування, плавлення та утворення у конденсованому стані 3-(1,5-дифенілпірол-2-іл)- пропанової кислоти. Виконано розрахунок ентальпії сублімації за 298 К та ентальпії утворення в газоподібному стані. Наведено порівняльний аналіз експериментально визначених значень з теоретично розрахованими за адитивними методами розрахунку.
dc.description.abstractUsing precision equipment, the enthalpies of vaporization, fusion and formation in the condensed state of 3-(1,5-diphenylpyrrol-2-yl)-propanoic acid were experimentally determined. The enthalpy of sublimation at 298 K and the enthalpy of formation in the gaseous state were calculated. A comparative analysis of the experimentally determined values with theoretically calculated values using additive calculation methods is given.
dc.format.extent8-14
dc.format.pages7
dc.identifier.citationThermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid / D. S. Shevchenko, Y. I. Horak, N. I. Tischenko, D. B. Pyshna, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 8–14.
dc.identifier.citationenThermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid / D. S. Shevchenko, Y. I. Horak, N. I. Tischenko, D. B. Pyshna, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 8–14.
dc.identifier.doidoi.org/10.23939/ctas2024.01.008
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111738
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Ribeiro da Silva, M. A., & Santos, A. F. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. The Journal of Physical Chemistry B, 114(8), 2846-2851. https://doi.org/10.1021/jp911323c
dc.relation.references2. Santos, A. F., & Ribeiro da Silva, M. A. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. The Journal of Physical Chemistry A, 117(24), 5195-5204. https://doi.org/10.1021/jp4032628
dc.relation.references3. Santos, A. F., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1-7. https://doi.org/10.1016/j.jct.2014.04.003
dc.relation.references4. Santos, A. F., & Ribeiro da Silva, M. A. V. (2010). A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441-1450. https://doi.org/10.1016/j.jct.2010.06.012
dc.relation.references5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854
dc.relation.references6. Forouzesh, A., Samadi Foroushani, S., Forouzesh, F., & Zand, E. (2019). Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00835
dc.relation.references7. Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., & Tishchenko, N. (2020). Thermodynamic properties of 6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chemistry & Chemical Technology, 14(3), 277-283. https://doi.org/10.23939/chcht14.03.277
dc.relation.references8. Kostiuk, R. R., Horak, Y., Velychkivska, N., Sobechko, I. B., Pyshna, D. B., & Dibrivnyi, V. (2023). Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic. Chemistry, Technology and Application of Substances, 6(1), 8-14. https://doi.org/10.23939/ctas2023.01.008
dc.relation.references9. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30-36. https://doi.org/10.23939/ctas2022.02.030
dc.relation.references10.Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326.
dc.relation.references11. Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku477
dc.relation.references12.Biological and bioorganic chemistry: textbook: in 2 books. Book 1. Bioorganic chemistry / B.S. Zimenkovskyi, V.A. Muzychenko, I.V. Nizhenkovska, G.O. Raw; under the editorship B.S. Zimenkovsky, I.V. Nizhenkovskaya. - 3rd edition. - K.: VSV "Medicine", 2022. - 272 p. [in Ukrainian]
dc.relation.references13. http://www.codata.info/resources/databases/key1.html
dc.relation.references14. Acree, W., & Chickos, J. S. (2016). Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. part 1. C1− C10. Journal of Physical and Chemical Reference Data, 45(3), 033101. https://doi.org/10.1063/1.4948363
dc.relation.references15.Benson, S. W. (1965). III - bond energies. Journal of Chemical Education, 42(9), 502. https://doi.org/10.1021/ed042p502
dc.relation.references16.Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805-1159. https://doi.org/10.1063/1.555927
dc.relation.references17.Cohen, N. (1996). Revised Group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(6), 1411-1481. https://doi.org/10.1063/1.555988
dc.relation.references18.Salmon, A., & Dalmazzone, D. (2007). Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions-part 2: Carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36(1), 19-58. https://doi.org/10.1063/1.2435401
dc.relation.referencesen1. Ribeiro da Silva, M. A., & Santos, A. F. (2010). Calorimetric and computational study of 2- and 3-acetyl-1-methylpyrrole isomers. The Journal of Physical Chemistry B, 114(8), 2846-2851. https://doi.org/10.1021/jp911323c
dc.relation.referencesen2. Santos, A. F., & Ribeiro da Silva, M. A. (2013). Molecular energetics of alkyl pyrrolecarboxylates: Calorimetric and computational study. The Journal of Physical Chemistry A, 117(24), 5195-5204. https://doi.org/10.1021/jp4032628
dc.relation.referencesen3. Santos, A. F., & Ribeiro da Silva, M. A. V. (2014). Experimental and high level ab initio enthalpies of formation of di- tri- tetra- and pentamethyl- substituted pyrroles. The Journal of Chemical Thermodynamics, 75, 1-7. https://doi.org/10.1016/j.jct.2014.04.003
dc.relation.referencesen4. Santos, A. F., & Ribeiro da Silva, M. A. V. (2010). A calorimetric and computational study of the thermochemistry of halogenated 1-phenylpyrrole derivatives. The Journal of Chemical Thermodynamics, 42(12), 1441-1450. https://doi.org/10.1016/j.jct.2010.06.012
dc.relation.referencesen5. Ivan, B.-C., Barbuceanu, S.-F., Hotnog, C. M., Anghel, A. I., Ancuceanu, R. V., Mihaila, M. A., Brasoveanu, L. I., Shova, S., Draghici, C., Olaru, O. T., Nitulescu, G. M., Dinu, M., & Dumitrascu, F. (2022). New pyrrole derivatives as promising biological agents: Design, synthesis, characterization, in silico, and cytotoxicity evaluation. International Journal of Molecular Sciences, 23(16), 8854. https://doi.org/10.3390/ijms23168854
dc.relation.referencesen6. Forouzesh, A., Samadi Foroushani, S., Forouzesh, F., & Zand, E. (2019). Reliable target prediction of bioactive molecules based on chemical similarity without employing statistical methods. Frontiers in Pharmacology, 10. https://doi.org/10.3389/fphar.2019.00835
dc.relation.referencesen7. Klachko, O., Matiychuk, V., Sobechko, I., Serheyev, V., & Tishchenko, N. (2020). Thermodynamic properties of 6-methyl-2-oxo-4-aryl-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid esters. Chemistry & Chemical Technology, 14(3), 277-283. https://doi.org/10.23939/chcht14.03.277
dc.relation.referencesen8. Kostiuk, R. R., Horak, Y., Velychkivska, N., Sobechko, I. B., Pyshna, D. B., & Dibrivnyi, V. (2023). Thermodynamic properties of 2-methyl-5-phenylfuran-3-carboxylic. Chemistry, Technology and Application of Substances, 6(1), 8-14. https://doi.org/10.23939/ctas2023.01.008
dc.relation.referencesen9. Sobechko, B., Dibrivnyi, V. M., & Gorak, Yu. I. (2022). Enthalpy of formation and combustion of 5-(4-nitrophenyl)furan-2-carbaldehyde and its 2-methyl and 2-oxomethyl derivatives in the condensed state. Chemistry, Technology and Application of Substances, 5(2), 30-36. https://doi.org/10.23939/ctas2022.02.030
dc.relation.referencesen10.Rossini F. D. Experimental Thermochemistry. Interscience Publishers. N. Y.; London, 1956. Vol. 2. P. 326.
dc.relation.referencesen11. Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku477
dc.relation.referencesen12.Biological and bioorganic chemistry: textbook: in 2 books. Book 1. Bioorganic chemistry, B.S. Zimenkovskyi, V.A. Muzychenko, I.V. Nizhenkovska, G.O. Raw; under the editorship B.S. Zimenkovsky, I.V. Nizhenkovskaya, 3rd edition, K., VSV "Medicine", 2022, 272 p. [in Ukrainian]
dc.relation.referencesen13. http://www.codata.info/resources/databases/key1.html
dc.relation.referencesen14. Acree, W., & Chickos, J. S. (2016). Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. part 1. P.1− P.10. Journal of Physical and Chemical Reference Data, 45(3), 033101. https://doi.org/10.1063/1.4948363
dc.relation.referencesen15.Benson, S. W. (1965). III - bond energies. Journal of Chemical Education, 42(9), 502. https://doi.org/10.1021/ed042p502
dc.relation.referencesen16.Domalski, E. S., & Hearing, E. D. (1993). Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. Journal of Physical and Chemical Reference Data, 22(4), 805-1159. https://doi.org/10.1063/1.555927
dc.relation.referencesen17.Cohen, N. (1996). Revised Group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 25(6), 1411-1481. https://doi.org/10.1063/1.555988
dc.relation.referencesen18.Salmon, A., & Dalmazzone, D. (2007). Prediction of enthalpy of formation in the solid state (at 298.15K) using second-order group contributions-part 2: Carbon-hydrogen, carbon-hydrogen-oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Journal of Physical and Chemical Reference Data, 36(1), 19-58. https://doi.org/10.1063/1.2435401
dc.relation.urihttps://doi.org/10.1021/jp911323c
dc.relation.urihttps://doi.org/10.1021/jp4032628
dc.relation.urihttps://doi.org/10.1016/j.jct.2014.04.003
dc.relation.urihttps://doi.org/10.1016/j.jct.2010.06.012
dc.relation.urihttps://doi.org/10.3390/ijms23168854
dc.relation.urihttps://doi.org/10.3389/fphar.2019.00835
dc.relation.urihttps://doi.org/10.23939/chcht14.03.277
dc.relation.urihttps://doi.org/10.23939/ctas2023.01.008
dc.relation.urihttps://doi.org/10.23939/ctas2022.02.030
dc.relation.urihttps://doi.org/10.1093/nar/gku477
dc.relation.urihttp://www.codata.info/resources/databases/key1.html
dc.relation.urihttps://doi.org/10.1063/1.4948363
dc.relation.urihttps://doi.org/10.1021/ed042p502
dc.relation.urihttps://doi.org/10.1063/1.555927
dc.relation.urihttps://doi.org/10.1063/1.555988
dc.relation.urihttps://doi.org/10.1063/1.2435401
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectенергія згоряння
dc.subjectентальпія згоряння
dc.subjectентальпія утворення
dc.subjectентальпія випаровування
dc.subjectентальпія плавлення
dc.subject3-(1
dc.subject5-дифенілпірол-2-іл)-пропанова кислота
dc.subjectcombustion energy
dc.subjectenthalpy of combustion
dc.subjectenthalpy of formation
dc.subjectenthalpy of vaporization
dc.subjectenthalpy of fusion
dc.subject3-(1
dc.subject5-diphenylpyrrol-2-yl)-propanoic acid
dc.titleThermodynamic properties of 3-(1,5-diphenylpyrrol-2-yl) propanoic acid
dc.title.alternativeТермодинамічні властивості 3-(1,5-дифенілпірол-2-іл) пропанової кислоти
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Shevchenko_D_S-Thermodynamic_properties_8-14.pdf
Size:
433.11 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Shevchenko_D_S-Thermodynamic_properties_8-14__COVER.png
Size:
472.98 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: