Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems

dc.citation.epage179
dc.citation.issue1
dc.citation.spage173
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationТехнічний університет Кошице
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationTechnical University of Kosice
dc.contributor.authorГриценко, О. М.
dc.contributor.authorДулебова, Л.
dc.contributor.authorБаран, Н. М.
dc.contributor.authorБережний, Б. В.
dc.contributor.authorВолошкевич, П. П.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorDulebova, L.
dc.contributor.authorBaran, N. M.
dc.contributor.authorBerezhnyy, B. V.
dc.contributor.authorVoloshkevych, P. P.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T09:22:50Z
dc.date.available2024-01-22T09:22:50Z
dc.date.created2020-02-21
dc.date.issued2020-02-21
dc.description.abstractВикладено результати дослідження кополімеризації 2-гідроксіетилметакрилату (ГЕМА) з полівінілпіролідоном (ПВП) під дією двокомпонентних ініціювальних систем феруму (ІІ) сульфат/ініціатор радикального типу. Встановлено вплив природи радикального ініціатора (In) в системі FeSO4/In на перебіг полімеризації ГЕМА/ПВП композицій, структурні параметри сітки полімерної матриці та властивості гідрогелів на основі пГЕМА-пр-ПВП кополімерів.
dc.description.abstractThe paper presents the results of the study of copolymerization of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) under the action of two-component initiation systems of iron (II) sulfate/radical type initiator. The influence of the nature of the radical initiator (In) in the FeSO4/In system on the behavior of the polymerization of HEMA/PVP compositions, structural parameters of the polymer matrix network and properties of hydrogels based on pHEMA-gr-PVP copolymers were established.
dc.format.extent173-179
dc.format.pages7
dc.identifier.citationSynthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems / O. M. Grytsenko, L. Dulebova, N. M. Baran, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 173–179.
dc.identifier.citationenSynthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems / O. M. Grytsenko, L. Dulebova, N. M. Baran, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 173–179.
dc.identifier.doidoi.org/10.23939/ctas2022.01.173
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60928
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (5), 2022
dc.relation.references1. Khan, S., Ullah, A., Ullah, K., & Rehman, N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19, 456-478. doi:10.1080/15685551.2016.1169380.
dc.relation.references2. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006.
dc.relation.references3. Ghobashy, M. M. (2018). Superabsorbent. S. Haider & A. Haider (Eds.), Hydrogels, 45–67. London, UK: IntechOpen. DOI:10.5772/intechopen.74698.
dc.relation.references4. Lim, H., Kim, H. S., Qazi, R., Kwon, Y., Jeong, J., & Yeo, W. (2019). Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 32(15), 1901924. DOI:10.1002/adma.201901924.
dc.relation.references5. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475–1486. DOI:10.1080/03602559.2011.593082.
dc.relation.references6. Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Polymeric hydrogels: characterization and biomedical applications (review). Designed Monomers and Polymers, 12, 197–201. DOI: 10.1163/156855509X436030.
dc.relation.references7. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23. DOI:10.1016/j.addr.2012.09.010.
dc.relation.references8. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., … Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLоS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484.
dc.relation.references9. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013.
dc.relation.references10. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. https://doi.org/10.1515/secm-2017-0161
dc.relation.references11. Nawaz, S., Khan, S., Farooq, U., Haider, M. S., Ranjha, N. M., Rasul, A., … Hameed, R. (2018). Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Designed Monomers and Polymers, 21, 18–32. DOI:10.1080/15685551.2018.1445416.
dc.relation.references12. Huang, W-S., & Cu, I.-M. (2019). Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering, PLоS ONE, 14(1), e0210285. https://doi.org/10.1371/journal.pone.0210285
dc.relation.references13. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogels, 136–214. London, UK: IntechOpen. DOI:10.5772/intechopen.72082.
dc.relation.references14. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., & Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Current Applied Physics, 10, 766–770. https://doi.org/10.1016/j.cap.2009.09.012.
dc.relation.references15. Suberlyak, O., Skorokhoda, V., Kozlova, N., Melnyk, Yu., Semenyuk, N., & Chopyk, N. (2014). The polyvinylpyrrolidone graft copolymers and soft contact lenses on their basis. ScienceRise, 5/3(5), 52–57. DOI: https://doi.org/10.15587/2313-8416.2014.33235.
dc.relation.references16. Suberlyak, О. V., Mel’nyk, Y. Y. & Skorokhoda, V. I. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.
dc.relation.references17. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., & Suljovrujić E. (2011). Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Physica Polonica A, 120, 279–283, DOI: 10.12693/APhysPolA.120.279.
dc.relation.references18. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., & Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromolecular Chemistry and Physics, 203, 1666–1673. https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D
dc.relation.references19. Frutos, P., Diez-Peña, E., Frutos, G., & Barrales-Rienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(Nvinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials, 23, 3787–3797. DOI:10.1016/s0142-9612(02)00028-5.
dc.relation.references20. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.references21. Domingues, J., Bonelli, N., Giorgi, R., & Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics A, 114, 705–710. DOI:10.1007/s00339-013-8150-0.
dc.relation.references22. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., …Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672, 150–158. DOI:10.1080/15421406.2018.1550546.
dc.relation.references23. Grytsenko, О., Horbenko, N., Gayduk, A., & Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141
dc.relation.references24. Grytsenko O., Dulebova L., Suberlyak O., Skorokhoda V., Spišák E., & Gajdos I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580–4594. https://doi.org/10.3390/ma13204580.
dc.relation.references25. Suberlyak, O. V., Skorokhoda, V. Y., & Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238.
dc.relation.references26. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu “Lvivska politekhnika”, 414, 82–85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
dc.relation.references27. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu “Lvivska politekhnika”, 488, 300–303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf.
dc.relation.references28. Achilias, D. S., & Sideridou, I. (2002). Study of the effect of two bpo/amine initiation systems on the free-radical polymerization of mma used in dental resins and bone cements. Journal of Macromolecular Science, Part A, 39(12), 1435–1450. DOI: 10.1081/MA-120016045.
dc.relation.references29. Miyagawa, Y., Urapepon, S., Ogura, H., & Honda, N. (2000). New initiation system for resin polymerization using metal particles and 4-META. Dental Materials Journal, 19(2), 164–172. DOI: 10.4012/dmj.19.164.
dc.relation.references30. Kabatc, J., Kostrzewska, K., Jurek, K., Kozak, M., Balcerak, A. & Orzeł, Ł. (2017). New Squaraine-based two-component initiation systems for UV-blue light induced radical polymerization: Kinetic and time-resolved laser spectroscopy studies. Journal of Polymer Science Part A: Polymer Chemistry, 55, 471–484. https://doi.org/10.1002/pola.28425
dc.relation.references31. Korchmarek, A. S, Nikityuk, A. I., Pidruchnyi, G. I., D'yachenko, B. I., Pisarenko, E. I., Rybalko, V. P., & Kireev, V. V. (2008). Influence of the Initiating System on the Strength of Polymer Composites based on Methyl Methacrylate. International Polymer Science and Technology, 35(10), 17–21. DOI:10.1177/0307174X0803501004.
dc.relation.references32. Toroptseva, A., Belohorodskaya, K. and Bondarenko, V. (1972). Laboratornyy praktikum po khimii i tekhnologii vysokomolekulyarnykh soyedineniy. Leningrad: Khimiya.
dc.relation.references33. Bekkedahl, N. (1949). Volume Dilatometry. Journal of Research of the National Bureau of Standards, 42, 145–156. https://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf.
dc.relation.references34. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-grPVP composites obtained by polymerization with simultaneous metal deposition: Structure and properties. Materials, 12, 1956. DOI: 10.3390/ma12121956.
dc.relation.references35. Grytsenko, O. M., Havlo, I. I., Skorokhoda, V. Y., Suberlyak O. V. (2001). Doslidzhennya polimeryzatsiyi PVP-(met)akrylatnykh kompozytsiy, initsiyovanoyi Fen+. Visnyk Natsionalʹnoho universytetu “Lvivska politekhnika”, 426, 68–70. Retrieved from: https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf.
dc.relation.referencesen1. Khan, S., Ullah, A., Ullah, K., & Rehman, N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19, 456-478. doi:10.1080/15685551.2016.1169380.
dc.relation.referencesen2. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006.
dc.relation.referencesen3. Ghobashy, M. M. (2018). Superabsorbent. S. Haider & A. Haider (Eds.), Hydrogels, 45–67. London, UK: IntechOpen. DOI:10.5772/intechopen.74698.
dc.relation.referencesen4. Lim, H., Kim, H. S., Qazi, R., Kwon, Y., Jeong, J., & Yeo, W. (2019). Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 32(15), 1901924. DOI:10.1002/adma.201901924.
dc.relation.referencesen5. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475–1486. DOI:10.1080/03602559.2011.593082.
dc.relation.referencesen6. Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Polymeric hydrogels: characterization and biomedical applications (review). Designed Monomers and Polymers, 12, 197–201. DOI: 10.1163/156855509X436030.
dc.relation.referencesen7. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23. DOI:10.1016/j.addr.2012.09.010.
dc.relation.referencesen8. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., … Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLoS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484.
dc.relation.referencesen9. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013.
dc.relation.referencesen10. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. https://doi.org/10.1515/secm-2017-0161
dc.relation.referencesen11. Nawaz, S., Khan, S., Farooq, U., Haider, M. S., Ranjha, N. M., Rasul, A., … Hameed, R. (2018). Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Designed Monomers and Polymers, 21, 18–32. DOI:10.1080/15685551.2018.1445416.
dc.relation.referencesen12. Huang, W-S., & Cu, I.-M. (2019). Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering, PLoS ONE, 14(1), e0210285. https://doi.org/10.1371/journal.pone.0210285
dc.relation.referencesen13. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogels, 136–214. London, UK: IntechOpen. DOI:10.5772/intechopen.72082.
dc.relation.referencesen14. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., & Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Current Applied Physics, 10, 766–770. https://doi.org/10.1016/j.cap.2009.09.012.
dc.relation.referencesen15. Suberlyak, O., Skorokhoda, V., Kozlova, N., Melnyk, Yu., Semenyuk, N., & Chopyk, N. (2014). The polyvinylpyrrolidone graft copolymers and soft contact lenses on their basis. ScienceRise, 5/3(5), 52–57. DOI: https://doi.org/10.15587/2313-8416.2014.33235.
dc.relation.referencesen16. Suberlyak, O. V., Mel’nyk, Y. Y. & Skorokhoda, V. I. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8.
dc.relation.referencesen17. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., & Suljovrujić E. (2011). Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Physica Polonica A, 120, 279–283, DOI: 10.12693/APhysPolA.120.279.
dc.relation.referencesen18. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., & Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromolecular Chemistry and Physics, 203, 1666–1673. https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D
dc.relation.referencesen19. Frutos, P., Diez-Peña, E., Frutos, G., & Barrales-Rienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(Nvinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials, 23, 3787–3797. DOI:10.1016/s0142-9612(02)00028-5.
dc.relation.referencesen20. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312.
dc.relation.referencesen21. Domingues, J., Bonelli, N., Giorgi, R., & Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics A, 114, 705–710. DOI:10.1007/s00339-013-8150-0.
dc.relation.referencesen22. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., …Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672, 150–158. DOI:10.1080/15421406.2018.1550546.
dc.relation.referencesen23. Grytsenko, O., Horbenko, N., Gayduk, A., & Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141
dc.relation.referencesen24. Grytsenko O., Dulebova L., Suberlyak O., Skorokhoda V., Spišák E., & Gajdos I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580–4594. https://doi.org/10.3390/ma13204580.
dc.relation.referencesen25. Suberlyak, O. V., Skorokhoda, V. Y., & Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238.
dc.relation.referencesen26. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu "Lvivska politekhnika", 414, 82–85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
dc.relation.referencesen27. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu "Lvivska politekhnika", 488, 300–303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf.
dc.relation.referencesen28. Achilias, D. S., & Sideridou, I. (2002). Study of the effect of two bpo/amine initiation systems on the free-radical polymerization of mma used in dental resins and bone cements. Journal of Macromolecular Science, Part A, 39(12), 1435–1450. DOI: 10.1081/MA-120016045.
dc.relation.referencesen29. Miyagawa, Y., Urapepon, S., Ogura, H., & Honda, N. (2000). New initiation system for resin polymerization using metal particles and 4-META. Dental Materials Journal, 19(2), 164–172. DOI: 10.4012/dmj.19.164.
dc.relation.referencesen30. Kabatc, J., Kostrzewska, K., Jurek, K., Kozak, M., Balcerak, A. & Orzeł, Ł. (2017). New Squaraine-based two-component initiation systems for UV-blue light induced radical polymerization: Kinetic and time-resolved laser spectroscopy studies. Journal of Polymer Science Part A: Polymer Chemistry, 55, 471–484. https://doi.org/10.1002/pola.28425
dc.relation.referencesen31. Korchmarek, A. S, Nikityuk, A. I., Pidruchnyi, G. I., D'yachenko, B. I., Pisarenko, E. I., Rybalko, V. P., & Kireev, V. V. (2008). Influence of the Initiating System on the Strength of Polymer Composites based on Methyl Methacrylate. International Polymer Science and Technology, 35(10), 17–21. DOI:10.1177/0307174X0803501004.
dc.relation.referencesen32. Toroptseva, A., Belohorodskaya, K. and Bondarenko, V. (1972). Laboratornyy praktikum po khimii i tekhnologii vysokomolekulyarnykh soyedineniy. Leningrad: Khimiya.
dc.relation.referencesen33. Bekkedahl, N. (1949). Volume Dilatometry. Journal of Research of the National Bureau of Standards, 42, 145–156. https://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf.
dc.relation.referencesen34. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-grPVP composites obtained by polymerization with simultaneous metal deposition: Structure and properties. Materials, 12, 1956. DOI: 10.3390/ma12121956.
dc.relation.referencesen35. Grytsenko, O. M., Havlo, I. I., Skorokhoda, V. Y., Suberlyak O. V. (2001). Doslidzhennya polimeryzatsiyi PVP-(met)akrylatnykh kompozytsiy, initsiyovanoyi Fen+. Visnyk Natsionalʹnoho universytetu "Lvivska politekhnika", 426, 68–70. Retrieved from: https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf.
dc.relation.urihttps://doi.org/10.1016/j.jare.2013.07.006
dc.relation.urihttps://doi.org/10.1371/journal.pone.0216484
dc.relation.urihttps://doi.org/10.3390/jfb9010013
dc.relation.urihttps://doi.org/10.1515/secm-2017-0161
dc.relation.urihttps://doi.org/10.1371/journal.pone.0210285
dc.relation.urihttps://doi.org/10.1016/j.cap.2009.09.012
dc.relation.urihttps://doi.org/10.15587/2313-8416.2014.33235
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.relation.urihttps://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D
dc.relation.urihttps://doi.org/10.23939/chcht14.03.312
dc.relation.urihttps://doi.org/10.15421/40260141
dc.relation.urihttps://doi.org/10.3390/ma13204580
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf
dc.relation.urihttp://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf
dc.relation.urihttps://doi.org/10.1002/pola.28425
dc.relation.urihttps://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf
dc.relation.urihttps://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилметакрилат
dc.subjectгідрогель
dc.subjectполімеризація
dc.subjectініціатор
dc.subjectферуму сульфат
dc.subjectприщеплений полімер
dc.subjectпросторово зшитий полімер
dc.subjectполімерна сітка
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethylmethacrylate
dc.subjecthydrogel
dc.subjectpolymerization
dc.subjectinitiator
dc.subjectiron sulfate
dc.subjectgraft copolymer
dc.subjectcrosslinked polymer
dc.subjectpolymer network
dc.titleSynthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems
dc.title.alternativeСинтез кополімерів полівінілпіролідону в присутності двокомпонентних ініціювальних систем
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v5n1_Grytsenko_O_M-Synthesis_of_polyvinylpyrolidone_173-179.pdf
Size:
571.43 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v5n1_Grytsenko_O_M-Synthesis_of_polyvinylpyrolidone_173-179__COVER.png
Size:
514.52 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.93 KB
Format:
Plain Text
Description: