Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems
dc.citation.epage | 179 | |
dc.citation.issue | 1 | |
dc.citation.spage | 173 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Технічний університет Кошице | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Technical University of Kosice | |
dc.contributor.author | Гриценко, О. М. | |
dc.contributor.author | Дулебова, Л. | |
dc.contributor.author | Баран, Н. М. | |
dc.contributor.author | Бережний, Б. В. | |
dc.contributor.author | Волошкевич, П. П. | |
dc.contributor.author | Grytsenko, O. M. | |
dc.contributor.author | Dulebova, L. | |
dc.contributor.author | Baran, N. M. | |
dc.contributor.author | Berezhnyy, B. V. | |
dc.contributor.author | Voloshkevych, P. P. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:50Z | |
dc.date.available | 2024-01-22T09:22:50Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Викладено результати дослідження кополімеризації 2-гідроксіетилметакрилату (ГЕМА) з полівінілпіролідоном (ПВП) під дією двокомпонентних ініціювальних систем феруму (ІІ) сульфат/ініціатор радикального типу. Встановлено вплив природи радикального ініціатора (In) в системі FeSO4/In на перебіг полімеризації ГЕМА/ПВП композицій, структурні параметри сітки полімерної матриці та властивості гідрогелів на основі пГЕМА-пр-ПВП кополімерів. | |
dc.description.abstract | The paper presents the results of the study of copolymerization of 2-hydroxyethylmethacrylate (HEMA) with polyvinylpyrrolidone (PVP) under the action of two-component initiation systems of iron (II) sulfate/radical type initiator. The influence of the nature of the radical initiator (In) in the FeSO4/In system on the behavior of the polymerization of HEMA/PVP compositions, structural parameters of the polymer matrix network and properties of hydrogels based on pHEMA-gr-PVP copolymers were established. | |
dc.format.extent | 173-179 | |
dc.format.pages | 7 | |
dc.identifier.citation | Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems / O. M. Grytsenko, L. Dulebova, N. M. Baran, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 173–179. | |
dc.identifier.citationen | Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems / O. M. Grytsenko, L. Dulebova, N. M. Baran, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 173–179. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.173 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60928 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Khan, S., Ullah, A., Ullah, K., & Rehman, N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19, 456-478. doi:10.1080/15685551.2016.1169380. | |
dc.relation.references | 2. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006. | |
dc.relation.references | 3. Ghobashy, M. M. (2018). Superabsorbent. S. Haider & A. Haider (Eds.), Hydrogels, 45–67. London, UK: IntechOpen. DOI:10.5772/intechopen.74698. | |
dc.relation.references | 4. Lim, H., Kim, H. S., Qazi, R., Kwon, Y., Jeong, J., & Yeo, W. (2019). Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 32(15), 1901924. DOI:10.1002/adma.201901924. | |
dc.relation.references | 5. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475–1486. DOI:10.1080/03602559.2011.593082. | |
dc.relation.references | 6. Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Polymeric hydrogels: characterization and biomedical applications (review). Designed Monomers and Polymers, 12, 197–201. DOI: 10.1163/156855509X436030. | |
dc.relation.references | 7. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23. DOI:10.1016/j.addr.2012.09.010. | |
dc.relation.references | 8. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., … Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLоS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484. | |
dc.relation.references | 9. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013. | |
dc.relation.references | 10. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. https://doi.org/10.1515/secm-2017-0161 | |
dc.relation.references | 11. Nawaz, S., Khan, S., Farooq, U., Haider, M. S., Ranjha, N. M., Rasul, A., … Hameed, R. (2018). Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Designed Monomers and Polymers, 21, 18–32. DOI:10.1080/15685551.2018.1445416. | |
dc.relation.references | 12. Huang, W-S., & Cu, I.-M. (2019). Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering, PLоS ONE, 14(1), e0210285. https://doi.org/10.1371/journal.pone.0210285 | |
dc.relation.references | 13. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogels, 136–214. London, UK: IntechOpen. DOI:10.5772/intechopen.72082. | |
dc.relation.references | 14. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., & Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Current Applied Physics, 10, 766–770. https://doi.org/10.1016/j.cap.2009.09.012. | |
dc.relation.references | 15. Suberlyak, O., Skorokhoda, V., Kozlova, N., Melnyk, Yu., Semenyuk, N., & Chopyk, N. (2014). The polyvinylpyrrolidone graft copolymers and soft contact lenses on their basis. ScienceRise, 5/3(5), 52–57. DOI: https://doi.org/10.15587/2313-8416.2014.33235. | |
dc.relation.references | 16. Suberlyak, О. V., Mel’nyk, Y. Y. & Skorokhoda, V. I. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8. | |
dc.relation.references | 17. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., & Suljovrujić E. (2011). Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Physica Polonica A, 120, 279–283, DOI: 10.12693/APhysPolA.120.279. | |
dc.relation.references | 18. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., & Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromolecular Chemistry and Physics, 203, 1666–1673. https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D | |
dc.relation.references | 19. Frutos, P., Diez-Peña, E., Frutos, G., & Barrales-Rienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(Nvinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials, 23, 3787–3797. DOI:10.1016/s0142-9612(02)00028-5. | |
dc.relation.references | 20. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312. | |
dc.relation.references | 21. Domingues, J., Bonelli, N., Giorgi, R., & Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics A, 114, 705–710. DOI:10.1007/s00339-013-8150-0. | |
dc.relation.references | 22. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., …Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672, 150–158. DOI:10.1080/15421406.2018.1550546. | |
dc.relation.references | 23. Grytsenko, О., Horbenko, N., Gayduk, A., & Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141 | |
dc.relation.references | 24. Grytsenko O., Dulebova L., Suberlyak O., Skorokhoda V., Spišák E., & Gajdos I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580–4594. https://doi.org/10.3390/ma13204580. | |
dc.relation.references | 25. Suberlyak, O. V., Skorokhoda, V. Y., & Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238. | |
dc.relation.references | 26. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu “Lvivska politekhnika”, 414, 82–85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf | |
dc.relation.references | 27. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu “Lvivska politekhnika”, 488, 300–303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf. | |
dc.relation.references | 28. Achilias, D. S., & Sideridou, I. (2002). Study of the effect of two bpo/amine initiation systems on the free-radical polymerization of mma used in dental resins and bone cements. Journal of Macromolecular Science, Part A, 39(12), 1435–1450. DOI: 10.1081/MA-120016045. | |
dc.relation.references | 29. Miyagawa, Y., Urapepon, S., Ogura, H., & Honda, N. (2000). New initiation system for resin polymerization using metal particles and 4-META. Dental Materials Journal, 19(2), 164–172. DOI: 10.4012/dmj.19.164. | |
dc.relation.references | 30. Kabatc, J., Kostrzewska, K., Jurek, K., Kozak, M., Balcerak, A. & Orzeł, Ł. (2017). New Squaraine-based two-component initiation systems for UV-blue light induced radical polymerization: Kinetic and time-resolved laser spectroscopy studies. Journal of Polymer Science Part A: Polymer Chemistry, 55, 471–484. https://doi.org/10.1002/pola.28425 | |
dc.relation.references | 31. Korchmarek, A. S, Nikityuk, A. I., Pidruchnyi, G. I., D'yachenko, B. I., Pisarenko, E. I., Rybalko, V. P., & Kireev, V. V. (2008). Influence of the Initiating System on the Strength of Polymer Composites based on Methyl Methacrylate. International Polymer Science and Technology, 35(10), 17–21. DOI:10.1177/0307174X0803501004. | |
dc.relation.references | 32. Toroptseva, A., Belohorodskaya, K. and Bondarenko, V. (1972). Laboratornyy praktikum po khimii i tekhnologii vysokomolekulyarnykh soyedineniy. Leningrad: Khimiya. | |
dc.relation.references | 33. Bekkedahl, N. (1949). Volume Dilatometry. Journal of Research of the National Bureau of Standards, 42, 145–156. https://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf. | |
dc.relation.references | 34. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-grPVP composites obtained by polymerization with simultaneous metal deposition: Structure and properties. Materials, 12, 1956. DOI: 10.3390/ma12121956. | |
dc.relation.references | 35. Grytsenko, O. M., Havlo, I. I., Skorokhoda, V. Y., Suberlyak O. V. (2001). Doslidzhennya polimeryzatsiyi PVP-(met)akrylatnykh kompozytsiy, initsiyovanoyi Fen+. Visnyk Natsionalʹnoho universytetu “Lvivska politekhnika”, 426, 68–70. Retrieved from: https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf. | |
dc.relation.referencesen | 1. Khan, S., Ullah, A., Ullah, K., & Rehman, N. (2016). Insight into hydrogels. Designed Monomers and Polymers, 19, 456-478. doi:10.1080/15685551.2016.1169380. | |
dc.relation.referencesen | 2. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research, 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006. | |
dc.relation.referencesen | 3. Ghobashy, M. M. (2018). Superabsorbent. S. Haider & A. Haider (Eds.), Hydrogels, 45–67. London, UK: IntechOpen. DOI:10.5772/intechopen.74698. | |
dc.relation.referencesen | 4. Lim, H., Kim, H. S., Qazi, R., Kwon, Y., Jeong, J., & Yeo, W. (2019). Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 32(15), 1901924. DOI:10.1002/adma.201901924. | |
dc.relation.referencesen | 5. Laftah, W. A., Hashim, S., & Ibrahim, A. N. (2011). Polymer hydrogels: A Review. Polymer-Plastics Technology and Engineering, 50, 1475–1486. DOI:10.1080/03602559.2011.593082. | |
dc.relation.referencesen | 6. Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Polymeric hydrogels: characterization and biomedical applications (review). Designed Monomers and Polymers, 12, 197–201. DOI: 10.1163/156855509X436030. | |
dc.relation.referencesen | 7. Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23. DOI:10.1016/j.addr.2012.09.010. | |
dc.relation.referencesen | 8. Abass, A., Stuart, S., Lopes, B. T. Zhou, D., Geraghty, B., Wu, R., … Elsheikh, A. (2019). Simulated optical performance of soft contact lenses on the eye. PLoS ONE, 14(5), e0216484. https://doi.org/10.1371/journal.pone.0216484. | |
dc.relation.referencesen | 9. Larrañeta, E., Stewart, S., Ervine, M., AlKasasbeh, R., & Donnelly, R. (2018). Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013. | |
dc.relation.referencesen | 10. Rafieian, S., Mirzadeh, H., Mahdavi, H., & Masoumi, M. E. (2018). A review on nanocomposite hydrogels and their biomedical applications. Science and Engineering of Composite Materials, 26(1), 154–174. https://doi.org/10.1515/secm-2017-0161 | |
dc.relation.referencesen | 11. Nawaz, S., Khan, S., Farooq, U., Haider, M. S., Ranjha, N. M., Rasul, A., … Hameed, R. (2018). Biocompatible hydrogels for the controlled delivery of anti-hypertensive agent: development, characterization and in vitro evaluation. Designed Monomers and Polymers, 21, 18–32. DOI:10.1080/15685551.2018.1445416. | |
dc.relation.referencesen | 12. Huang, W-S., & Cu, I.-M. (2019). Injectable polypeptide hydrogel/inorganic nanoparticle composites for bone tissue engineering, PLoS ONE, 14(1), e0210285. https://doi.org/10.1371/journal.pone.0210285 | |
dc.relation.referencesen | 13. Suberlyak, O., & Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. Haider & A. Haider (Eds.), Hydrogels, 136–214. London, UK: IntechOpen. DOI:10.5772/intechopen.72082. | |
dc.relation.referencesen | 14. Tang, Q., Yu, J.-R., Chen, L., Zhu, J., & Hu, Z.-M. (2010). Preparation and properties of morphology controlled poly(2-hydroxyethyl methacrylate)/poly(Nvinyl pyrrolidone) double networks for biomedical use. Current Applied Physics, 10, 766–770. https://doi.org/10.1016/j.cap.2009.09.012. | |
dc.relation.referencesen | 15. Suberlyak, O., Skorokhoda, V., Kozlova, N., Melnyk, Yu., Semenyuk, N., & Chopyk, N. (2014). The polyvinylpyrrolidone graft copolymers and soft contact lenses on their basis. ScienceRise, 5/3(5), 52–57. DOI: https://doi.org/10.15587/2313-8416.2014.33235. | |
dc.relation.referencesen | 16. Suberlyak, O. V., Mel’nyk, Y. Y. & Skorokhoda, V. I. (2015). Regularities of Preparation and Properties of Hydrogel Membranes. Materials Science, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8. | |
dc.relation.referencesen | 17. Jovašević, J., Dimitrijević, S., Filipović, J., Tomić, S., Mićić, M., & Suljovrujić E. (2011). Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Physica Polonica A, 120, 279–283, DOI: 10.12693/APhysPolA.120.279. | |
dc.relation.referencesen | 18. Ciardelli, G., Cristallini, C., Barbani, N., Benedetti, G., Crociani, A., Travison, L., & Giusti, P. (2002). Bioartificial polymeric materials: -amylase, poly(2-hydroxyethyl methacrylate), poly(N-vinylpyrrolidone) system. Macromolecular Chemistry and Physics, 203, 1666–1673. https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D | |
dc.relation.referencesen | 19. Frutos, P., Diez-Peña, E., Frutos, G., & Barrales-Rienda, J. (2002). Release of gentamicin sulphate from a modified commercial bone cement. Effect of (2-hydroxyethyl methacrylate) comonomer and poly(Nvinyl-2-pyrrolidone) additive on release mechanism and kinetics. Biomaterials, 23, 3787–3797. DOI:10.1016/s0142-9612(02)00028-5. | |
dc.relation.referencesen | 20. Suberlyak, O., Grytsenko, O., Baran, N., Yatsulchak, G., & Berezhnyy, B. (2020). Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chemistry & Chemical Technology, 14(3), 312–317. https://doi.org/10.23939/chcht14.03.312. | |
dc.relation.referencesen | 21. Domingues, J., Bonelli, N., Giorgi, R., & Baglioni, P. (2013). Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings. Applied Physics A, 114, 705–710. DOI:10.1007/s00339-013-8150-0. | |
dc.relation.referencesen | 22. Bashtyk, Y., Fechan, A., Grytsenko, O., Hotra, Z., Kremer, I., Suberlyak, O., …Kotsarenko M. (2019). Electrical elements of the optical systems based on hydrogel – electrochromic polymer composites. Molecular Crystals and Liquid Crystals, 672, 150–158. DOI:10.1080/15421406.2018.1550546. | |
dc.relation.referencesen | 23. Grytsenko, O., Horbenko, N., Gayduk, A., & Suberlyak, O. (2016). Using of Metal-filled Polymer Hydrogels for Conductometric Moisture Gages. Scientific Bulletin of UNFU, 26(1), 223–229. https://doi.org/10.15421/40260141 | |
dc.relation.referencesen | 24. Grytsenko O., Dulebova L., Suberlyak O., Skorokhoda V., Spišák E., & Gajdos I. (2020). Features of structure and properties of pHEMA-gr-PVP block copolymers, obtained in the presence of Fe2+. Materials, 13(20), 4580–4594. https://doi.org/10.3390/ma13204580. | |
dc.relation.referencesen | 25. Suberlyak, O. V., Skorokhoda, V. Y., & Grytsenko O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy i khymycheskoy tekhnolohyy, 1, 236–238. | |
dc.relation.referencesen | 26. Grytsenko, O. M., Skorokhoda, V. Y., Shapoval, P. Y., & Bukhvak, I. V. (2000). Doslidzhennya pryshcheplenoyi polimeryzatsiyi na PVP, initsiyovanoyi solyamy metaliv zminnoyi valentnosti. Visnyk Derzhavnoho univesytetu "Lvivska politekhnika", 414, 82–85. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf | |
dc.relation.referencesen | 27. Grytsenko, O. M., Skorokhoda, V. Y., Yadushynsʹkyy, R. Y. (2004). Strukturni parametry ta vlastyvosti kopolimeriv 2-OEMA-PVP, oderzhanykh v prysutnosti Fe2+. Visnyk Natsionalʹnoho universytetu "Lvivska politekhnika", 488, 300–303. Retrieved from: http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf. | |
dc.relation.referencesen | 28. Achilias, D. S., & Sideridou, I. (2002). Study of the effect of two bpo/amine initiation systems on the free-radical polymerization of mma used in dental resins and bone cements. Journal of Macromolecular Science, Part A, 39(12), 1435–1450. DOI: 10.1081/MA-120016045. | |
dc.relation.referencesen | 29. Miyagawa, Y., Urapepon, S., Ogura, H., & Honda, N. (2000). New initiation system for resin polymerization using metal particles and 4-META. Dental Materials Journal, 19(2), 164–172. DOI: 10.4012/dmj.19.164. | |
dc.relation.referencesen | 30. Kabatc, J., Kostrzewska, K., Jurek, K., Kozak, M., Balcerak, A. & Orzeł, Ł. (2017). New Squaraine-based two-component initiation systems for UV-blue light induced radical polymerization: Kinetic and time-resolved laser spectroscopy studies. Journal of Polymer Science Part A: Polymer Chemistry, 55, 471–484. https://doi.org/10.1002/pola.28425 | |
dc.relation.referencesen | 31. Korchmarek, A. S, Nikityuk, A. I., Pidruchnyi, G. I., D'yachenko, B. I., Pisarenko, E. I., Rybalko, V. P., & Kireev, V. V. (2008). Influence of the Initiating System on the Strength of Polymer Composites based on Methyl Methacrylate. International Polymer Science and Technology, 35(10), 17–21. DOI:10.1177/0307174X0803501004. | |
dc.relation.referencesen | 32. Toroptseva, A., Belohorodskaya, K. and Bondarenko, V. (1972). Laboratornyy praktikum po khimii i tekhnologii vysokomolekulyarnykh soyedineniy. Leningrad: Khimiya. | |
dc.relation.referencesen | 33. Bekkedahl, N. (1949). Volume Dilatometry. Journal of Research of the National Bureau of Standards, 42, 145–156. https://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf. | |
dc.relation.referencesen | 34. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-grPVP composites obtained by polymerization with simultaneous metal deposition: Structure and properties. Materials, 12, 1956. DOI: 10.3390/ma12121956. | |
dc.relation.referencesen | 35. Grytsenko, O. M., Havlo, I. I., Skorokhoda, V. Y., Suberlyak O. V. (2001). Doslidzhennya polimeryzatsiyi PVP-(met)akrylatnykh kompozytsiy, initsiyovanoyi Fen+. Visnyk Natsionalʹnoho universytetu "Lvivska politekhnika", 426, 68–70. Retrieved from: https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf. | |
dc.relation.uri | https://doi.org/10.1016/j.jare.2013.07.006 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0216484 | |
dc.relation.uri | https://doi.org/10.3390/jfb9010013 | |
dc.relation.uri | https://doi.org/10.1515/secm-2017-0161 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0210285 | |
dc.relation.uri | https://doi.org/10.1016/j.cap.2009.09.012 | |
dc.relation.uri | https://doi.org/10.15587/2313-8416.2014.33235 | |
dc.relation.uri | https://doi.org/10.1007/s11003-015-9798-8 | |
dc.relation.uri | https://doi.org/10.1002/1521-3935(200207)203:10/11<1666::AID-MACP1666>3.0.CO;2-D | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.312 | |
dc.relation.uri | https://doi.org/10.15421/40260141 | |
dc.relation.uri | https://doi.org/10.3390/ma13204580 | |
dc.relation.uri | http://ena.lp.edu.ua/bitstream/ntb/8974/1/25.pdf | |
dc.relation.uri | http://ena.lp.edu.ua/bitstream/ntb/12009/1/45.pdf | |
dc.relation.uri | https://doi.org/10.1002/pola.28425 | |
dc.relation.uri | https://nvlpubs.nist.gov/nistpubs/jres/43/jresv43n2p145_A1b.pdf | |
dc.relation.uri | https://ena.lpnu.ua/bitstream/ntb/37815/1/22_67-69.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | полівінілпіролідон | |
dc.subject | 2-гідроксіетилметакрилат | |
dc.subject | гідрогель | |
dc.subject | полімеризація | |
dc.subject | ініціатор | |
dc.subject | феруму сульфат | |
dc.subject | прищеплений полімер | |
dc.subject | просторово зшитий полімер | |
dc.subject | полімерна сітка | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | 2-hydroxyethylmethacrylate | |
dc.subject | hydrogel | |
dc.subject | polymerization | |
dc.subject | initiator | |
dc.subject | iron sulfate | |
dc.subject | graft copolymer | |
dc.subject | crosslinked polymer | |
dc.subject | polymer network | |
dc.title | Synthesis of polyvinylpyrolidone copolymers in the presence of two-component initiation systems | |
dc.title.alternative | Синтез кополімерів полівінілпіролідону в присутності двокомпонентних ініціювальних систем | |
dc.type | Article |
Files
License bundle
1 - 1 of 1