Modeling of two-motor front-wheel drive control for electric vehicle with electronic differential based on energetic macroscopic representation

dc.citation.epage60
dc.citation.issue1
dc.citation.spage51
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЩур, Ігор
dc.contributor.authorГавдьо, Ігор
dc.contributor.authorБілецький, Юрій
dc.contributor.authorShchur, Ihor
dc.contributor.authorHavdo, Ihor
dc.contributor.authorBiletskyi, Yurii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-14T07:56:07Z
dc.date.available2023-09-14T07:56:07Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractНа відміну від автомобіля, сучасний електромобіль (ЕМ) може мати різні конфігурації підсистеми електричної тяги із застосуванням одного, двох чи чотирьох привідних електричних двигунів коліс. У цій статті досліджено передньопривідну дводвигунну конфігурацію з незалежним приводом коліс, в якій регулюванням електромагнітних моментів двигунів забезпечується виконання двох функцій: електричної тяги та керування напрямком руху. Останню функцію виконує електронний диференціал, який застосовують замість традиційної механічної диференціальної передачі та механічної системи рульового керування. Виконання вказаних функцій покладено на розроблену на основі геометрії Ackermann-Jeantaud систему керування привідними двигунами. У роботі для дослідження роботи дослідного ЕМ застосовано новий підхід до побудови математичних моделей складних систем на енергетичній основі – макроенергетичне представлення (EMR). За інверсним принципом, передбаченим EMR, розроблено систему керування рухом ЕМ. Проведені симуляційні дослідження в середовищі MatLab/Simulink показали працезданість розробленої системи керування та високу точність підтримання заданих швидкості та напрямку руху як в усталених, так і в перехідних режимах роботи ЕМ.
dc.description.abstractUnlike a car, a modern electric vehicle (EV) can have different configurations of the electrical traction subsystem using one, two or four drive-wheel electric motors. This paper investigates a two-motor front-wheel drive configuration, in which the control of the electromagnetic torques of the motors provides two functions: electric traction and direction control. The latter function performs an electronic differential, which is used in place of the traditional mechanical differential transmission and mechanical steering system. The implementation of the aforementioned functions has been put on the developed motor drive control system based on Ackermann-Jeantaud geometry. For the study of the experimental EV, a new energy-based approach for constructing mathematical models of complex systems – Energetic Macroscopic Representation (EMR) is used. According to the inverse principle provided by EMR, EV motion control system was developed. Conducted simulation studies in the software Matlab/Simulink showed the efficiency of the developed control system and high accuracy of maintaining the set speed and direction of motion in both steady and transient modes of EV.
dc.format.extent51-60
dc.format.pages10
dc.identifier.citationShchur I. Modeling of two-motor front-wheel drive control for electric vehicle with electronic differential based on energetic macroscopic representation / Ihor Shchur, Ihor Havdo, Yurii Biletskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 51–60.
dc.identifier.citationenShchur I. Modeling of two-motor front-wheel drive control for electric vehicle with electronic differential based on energetic macroscopic representation / Ihor Shchur, Ihor Havdo, Yurii Biletskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 51–60.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60000
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (6), 2020
dc.relation.references[1] Stippich, A., van der Broeck, C. H., Sewergin, A. and Wienhausen, A. H. (2017) Key Components of Modular Propulsion Systems for Next Generation Electric Vehicles. CPSS Trans. Power Electronics and Applications, 2(4), 249–258. http://dx.doi.org/10.24295/CPSSTPEA.2017.00023
dc.relation.references[2] Kumar, L. and Jain, S. (2014) Electric Propulsion System for Electric Vehicular Technology: A Review. Renewable and Sustainable Energy Reviews, 29, 924–940. http://dx.doi.org/10.1016/j.rser. 2013.09.014
dc.relation.references[3] Yildirim, M., Oksuztepe, E., Tanyeri, B. and Kurum H. (2015) Electronic Differential System for an Electric Vehicle with In-Wheel Motor. Proc. 9th Int. Conf. on Electrical and Electronics Engineering (ELECO), 26–28 Nov. 2015, Bursa, Turkey, 1048–1052. http://dx.doi.org/10.1109/ELECO.2015.7394567
dc.relation.references[4] EMR Website. Energetic Macroscopic Representation. http://www.emrwebsite.org/energetic-macroscopic-representation.html
dc.relation.references[5] Shchur, I., Kasha, L. and Bukavyn, M. (2020) Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. Proc. 15th IEEE Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET2020), 25–29 Feb., 2020, Lviv–Slavske, Ukraine. 6 p.
dc.relation.references[6] Yildirim, M., Polat, M. and Kurum, H. A (2014) Survey on Comparison of Electric Motor Types and Drives Used for Electric Vehicles. Proc. IEEE 16th Int. Power Electronics and Motion Control Conf. and Exposition (PEMC), 21-24 Sept. 2014, Antalya, Turkey, 218–223. http://dx.doi.org/10.1109/EPEPEMC.2014.6980715
dc.relation.references[7] Uysal, A. and EmelSoylu, E. (2017) Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles. Int. J. Advanced Computer Science and Applications(IJACSA), 8(9), 129–134. http://dx.doi.org/10.14569/IJACSA.2017.080918
dc.relation.references[8] Tumari, M. Z. M., Saealal, M. S., Abd Rashid, W. N., Saat, S. and Mohd Nasir, M. A. (2017) The Vehicle Steer by Wire Control System by Implementing PID Controller. J. Telecommunication, Electronic and Computer Engineering, 9(3-2), 43–47.
dc.relation.references[9] Hu, J.-S., Lin, X.-C. and Hu, F.-R. (2014) Direct Yaw-Moment Control for In-wheel Motor Electric Vehicles. Proc. IEEE/SICE Int. Symp. System Integration, 13–15 Dec., 2014, Tokyo, Japan, 475-479. http://dx.doi.org/10.1109/SII.2014.7028085
dc.relation.references[10] Lemaire-Semail, B., Lhomme, W., Bouscayrol, A. and Barrade P. (2014) Energetic Macroscopic Representation. Seminar Sept. 2014. http://www.emrwebsite.org/uploads/Fichiers/EPFL-2014/3-EMR.pdf
dc.relation.references[11] Depature, C., Lhomme, W. and Bouscavrol A. (2013) Teaching Electric Vehicle Drive Control Using Energetic Macroscopic Representation. Proc. 2013 World Electric Vehicle Symposium and Exhibition, 17–20 Nov. 2013, Barcelona, Spain, 6 p. http://dx.doi.org/10.1109/EVS.2013.6914831
dc.relation.references[12] Chen, K., Bouscayrol, A., Berthon, A., Delarue, P., Hissel, D. and Trigui R. (2008) Global Modeling of Different Vehicles Using Energetic Macroscopic Representation. Proc. IEEE Vehicle Power and Propulsion Conf., 3–5 Sept. 2008, Harbin, China, 533-539. http://dx.doi.org/10.1109/VPPC.2008.4677728
dc.relation.references[13] Chen, K., Bouscayrol, A. and Lhomme, W. (2008) Energetic Macroscopic Representation and Inversion-based Control: Application to an Electric Vehicle with an Electrical Differential. J. Asian Electric Vehicles, 6(1), 234–239. https://doi.org/10.4130/jaev.6.1097
dc.relation.references[14] Shchur, I. (2019) Active Steering System in the Electronic Differential of the Electric Vehicle with the Individual Drive of the Two Front Wheels. Bulletin of the National Tech. University “KhPI”. Series: Problems of Automated Electric Drive. Theory and Practice, 16’2019. 99–104. http://dx.doi.org/10.20998/2079-8024.2019.16.18. (in Ukrainian)
dc.relation.referencesen[1] Stippich, A., van der Broeck, C. H., Sewergin, A. and Wienhausen, A. H. (2017) Key Components of Modular Propulsion Systems for Next Generation Electric Vehicles. CPSS Trans. Power Electronics and Applications, 2(4), 249–258. http://dx.doi.org/10.24295/CPSSTPEA.2017.00023
dc.relation.referencesen[2] Kumar, L. and Jain, S. (2014) Electric Propulsion System for Electric Vehicular Technology: A Review. Renewable and Sustainable Energy Reviews, 29, 924–940. http://dx.doi.org/10.1016/j.rser. 2013.09.014
dc.relation.referencesen[3] Yildirim, M., Oksuztepe, E., Tanyeri, B. and Kurum H. (2015) Electronic Differential System for an Electric Vehicle with In-Wheel Motor. Proc. 9th Int. Conf. on Electrical and Electronics Engineering (ELECO), 26–28 Nov. 2015, Bursa, Turkey, 1048–1052. http://dx.doi.org/10.1109/ELECO.2015.7394567
dc.relation.referencesen[4] EMR Website. Energetic Macroscopic Representation. http://www.emrwebsite.org/energetic-macroscopic-representation.html
dc.relation.referencesen[5] Shchur, I., Kasha, L. and Bukavyn, M. (2020) Efficiency Evaluation of Single and Modular Cascade Machines Operation in Electric Vehicle. Proc. 15th IEEE Int. Conf. on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET2020), 25–29 Feb., 2020, Lviv–Slavske, Ukraine. 6 p.
dc.relation.referencesen[6] Yildirim, M., Polat, M. and Kurum, H. A (2014) Survey on Comparison of Electric Motor Types and Drives Used for Electric Vehicles. Proc. IEEE 16th Int. Power Electronics and Motion Control Conf. and Exposition (PEMC), 21-24 Sept. 2014, Antalya, Turkey, 218–223. http://dx.doi.org/10.1109/EPEPEMC.2014.6980715
dc.relation.referencesen[7] Uysal, A. and EmelSoylu, E. (2017) Embedded System Design and Implementation of an Intelligent Electronic Differential System for Electric Vehicles. Int. J. Advanced Computer Science and Applications(IJACSA), 8(9), 129–134. http://dx.doi.org/10.14569/IJACSA.2017.080918
dc.relation.referencesen[8] Tumari, M. Z. M., Saealal, M. S., Abd Rashid, W. N., Saat, S. and Mohd Nasir, M. A. (2017) The Vehicle Steer by Wire Control System by Implementing PID Controller. J. Telecommunication, Electronic and Computer Engineering, 9(3-2), 43–47.
dc.relation.referencesen[9] Hu, J.-S., Lin, X.-C. and Hu, F.-R. (2014) Direct Yaw-Moment Control for In-wheel Motor Electric Vehicles. Proc. IEEE/SICE Int. Symp. System Integration, 13–15 Dec., 2014, Tokyo, Japan, 475-479. http://dx.doi.org/10.1109/SII.2014.7028085
dc.relation.referencesen[10] Lemaire-Semail, B., Lhomme, W., Bouscayrol, A. and Barrade P. (2014) Energetic Macroscopic Representation. Seminar Sept. 2014. http://www.emrwebsite.org/uploads/Fichiers/EPFL-2014/3-EMR.pdf
dc.relation.referencesen[11] Depature, C., Lhomme, W. and Bouscavrol A. (2013) Teaching Electric Vehicle Drive Control Using Energetic Macroscopic Representation. Proc. 2013 World Electric Vehicle Symposium and Exhibition, 17–20 Nov. 2013, Barcelona, Spain, 6 p. http://dx.doi.org/10.1109/EVS.2013.6914831
dc.relation.referencesen[12] Chen, K., Bouscayrol, A., Berthon, A., Delarue, P., Hissel, D. and Trigui R. (2008) Global Modeling of Different Vehicles Using Energetic Macroscopic Representation. Proc. IEEE Vehicle Power and Propulsion Conf., 3–5 Sept. 2008, Harbin, China, 533-539. http://dx.doi.org/10.1109/VPPC.2008.4677728
dc.relation.referencesen[13] Chen, K., Bouscayrol, A. and Lhomme, W. (2008) Energetic Macroscopic Representation and Inversion-based Control: Application to an Electric Vehicle with an Electrical Differential. J. Asian Electric Vehicles, 6(1), 234–239. https://doi.org/10.4130/jaev.6.1097
dc.relation.referencesen[14] Shchur, I. (2019) Active Steering System in the Electronic Differential of the Electric Vehicle with the Individual Drive of the Two Front Wheels. Bulletin of the National Tech. University "KhPI". Series: Problems of Automated Electric Drive. Theory and Practice, 16’2019. 99–104. http://dx.doi.org/10.20998/2079-8024.2019.16.18. (in Ukrainian)
dc.relation.urihttp://dx.doi.org/10.24295/CPSSTPEA.2017.00023
dc.relation.urihttp://dx.doi.org/10.1016/j.rser
dc.relation.urihttp://dx.doi.org/10.1109/ELECO.2015.7394567
dc.relation.urihttp://www.emrwebsite.org/energetic-macroscopic-representation.html
dc.relation.urihttp://dx.doi.org/10.1109/EPEPEMC.2014.6980715
dc.relation.urihttp://dx.doi.org/10.14569/IJACSA.2017.080918
dc.relation.urihttp://dx.doi.org/10.1109/SII.2014.7028085
dc.relation.urihttp://www.emrwebsite.org/uploads/Fichiers/EPFL-2014/3-EMR.pdf
dc.relation.urihttp://dx.doi.org/10.1109/EVS.2013.6914831
dc.relation.urihttp://dx.doi.org/10.1109/VPPC.2008.4677728
dc.relation.urihttps://doi.org/10.4130/jaev.6.1097
dc.relation.urihttp://dx.doi.org/10.20998/2079-8024.2019.16.18
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectелектромобіль
dc.subjectдводвигунний передній привід
dc.subjectелектронний диференціал
dc.subjectмакроенергетичне представлення
dc.subjectelectric vehicle (EV)
dc.subjecttwo-motor front-wheel drive
dc.subjectelectronic differential
dc.subjectEnergetic Macroscopic Representation (EMR)
dc.titleModeling of two-motor front-wheel drive control for electric vehicle with electronic differential based on energetic macroscopic representation
dc.title.alternativeМоделювання керування дводвигунним передньопривідним електромобілем з електронним диференціалом за принципом макроенергетичного представлення
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v6n1_Shchur_I-Modeling_of_two_motor_front_51-60.pdf
Size:
564.82 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v6n1_Shchur_I-Modeling_of_two_motor_front_51-60__COVER.png
Size:
441.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: