Геодинаміка. – 2010. – №1(9)

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/10156

Науковий журнал

Науковий журнал “Геодинаміка” містить три розділи – “Геодезія”, “Геологія”, “Геофізика” і публікує українською, російською та англійською мовами статті українських та зарубіжних вчених з зазначених дисциплін, які стосуються проблем геодинаміки та суміжних питань. Для спеціалістів-геодезистів, геологів та геофізиків, науковців академічних і галузевих установ, викладачів, аспірантів та студентів вищих навчальних закладів, які займаються проблемами геодинаміки та дослідженнями в суміжних галузях наук.

Геодинаміка : науковий журнал / Міністерство освіти і науки України, Національний університет "Львівська політехніка", Державна служба геодезії, картографії та кадастру України, Національна академія наук України, Інститут геофізики ім. С. І. Субботіна, Інститут геології і геохімії горючих копалин, Львівське астрономо-геодезичне товариство ; головний редактор К. Р. Третяк. – Львів : Видавництво Національного університету «Львівська політехніка», 2010. – № 1 (9). – 108 с. : іл. – Бібліографія в кінці розділів.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Розв’язання оберненої задачі сейсморозвідки з використанням енергетичного підходу до аналізу хвильових полів
    (Видавництво Національного університету «Львівська політехніка», 2010) Стародуб, Ю. П.; Карпенко, О. В.
    Розглянуто реалізацію енергетичного підходу до аналізу хвильового поля щодо розроблюваної в роботі інформаційної моделі геологічного середовища. Наведено розв’язання оберненої задачі сейсморозвідки, яке передбачає отримання геофізичних параметрів геологічного середовища з використанням польової сейсморозвідувальної інформації. З метою отримання геолого-геофізичних параметрів середовища виконані перетворення хвильового поля, які умовно поділяють на первинні та остаточні (інтерпретацію). Інтерпретаційний етап перетворення хвильових полів передбачає застосування розроблених математичних алгоритмів. Рассматрены реализация энергетического подхода к анализу волнового поля по разрабатываемой в работе информационной модели геологической среды. Представлено решение обратной задачи сейсморазведки, которое предусматривает получение геофизических параметров геологической среды с использованием полевой сейсморазведочной информации. С целью получения геолого-геофизических параметров среды проводится ряд преобразований волнового поля, которые условно разделяют на первичные и окончательные (интерпретацию). Интерпретационный этап преобразования волновых полей предусматривает применение разработанных математических алгоритмов. In the paper the implementation of energy wave field analysis approach for developed informational model of the geological medium is considered. The solutions of seismic inverse problem are presented, which involves geophysical parameters obtaining of geological medium with the use of field seismic data. In order to obtain geological and geophysical environmental parameters the number of wave field transformations are being carried out, conventionally divided into primary and final part(interpretation). Interpretational phase of wave fields’ transformation involves usage of the elaborated mathematical algorithms.
  • Thumbnail Image
    Item
    Моделирование сейсмических разрезов с учетом напряженного состояния среды
    (Видавництво Національного університету «Львівська політехніка», 2010) Кулиев, Г. Г.; Агаев, Х. Б.
    Представлены методики для обработки данных в сейсморазведке – для инверсии временных сейсмических разрезов в глубинные, позволяющие экстраполировать одномерные модели физических параметров среды, определенные по данным скважинных геофизических исследований, в около скважинные пространства. Предусмотрена корректировка модели с учетом термодинамического состояния среды,расчет различных физических параметров среды в рамках классической и неклассической теорий деформаций, а также расчет синтетических сейсмограмм. Так, разность значений μ и λ между неклассическим и классическим методами составляет соответственно 4,7 % и -1,4 %, что является существенным. Двухмерная модель среды получается путем экстраполяции одномерной модели с учетом положения акустических границ. При переходе к близкой к реальной (3D) модели учитываются изменения значений пластовых скоростей продольных и поперечных волн и плотности по тонким пластам по глубине и по профилю, а также изменения геостатического давления среды по пластам вдоль профиля. При этом достигается значимое уточнение времен, определяющих глубины залегания сейсмических горизонтов. Разность времен достигает 0,17 с, что эквивалентно разности в глубинах до 330 м и более и важно для уточнения структурных построений, особенно касательно поиска ловушек углеводородов. Наведено методики для оброблення даних у сейсморозвідцідля інверсії часових сейсмічних розрізів в глибинні, що дають змогу екстраполювати одновимірні моделі фізичних параметрів середовища, визначені за даними свердловинних геофізичних досліджень, у навколосвердловинний простір. Передбачено коригування моделі з урахуванням термодинамічного стану середовища, розрахунок різних фізичних параметрів середовища в межах класичної та некласичної теорій деформацій, а також розрахунок синтетичних сейсмограм. Так, різниця значень μ і λ між некласичним і класичним методами становить відповідно 4,7% і -1,4%, що є істотним. Двовимірна модель середовища отримується екстраполяцією одновимірної моделі з урахуванням положення акустичних границь. У разі переходу до близької до реальної (3D) моделі враховуються зміни значень пластових швидкостей поздовжніх і поперечних хвиль та густини по тонких пластах вздовж профілю та з глибиною, а також зміни геостатичного тиску по пластах вздовж профілю. До того ж досягається істотне уточнення часів, що визначають глибини залягання сейсмічних горизонтів. Різниця часів досягає 0,17 с, що еквівалентно різниці в глибинах до 330 м і більше і є важливим для уточнення структурних побудов, особливо щодо пошуку пасток вуглеводнів. The paper presents the techniques for processing of seismic prospecting datafor inversion of time seismic sections to depth ones. This makes it possible to extrapolate defined by wells’ geophysical investigations one-dimensional models of medium’s physical properties into the borehole environment. Correcting of the model taking into account the thermodynamic state of the medium and calculation of various physical properties of medium within the classical and non-classical theories of deformation as well as calculation of synthetic seismograms is provided. Thus, the differences between the classical and non-classical theories for values μ and λ are correspondingly 4.7 % and -1.4 %, which is substantial.2D model of the medium is composed by extrapolating of one-dimensional model accounting the location of acoustic borders. At passing to close to the real (3D) model the changes of values of formation velocities of longitudinal and transverse waves and densities of thin layers in depth and profile takes into account as well as the changes of geostatic pressure on layers along the profile. At thus the substantial refinement of time which define the depth of the seismic horizons is reached. Time difference reaches 0.17 s, which is equivalent to the difference in depths up to 330 m or more and it is important for specifying of structural models, especially concerning the hydrocarbon traps prospecting.