Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі. – 2020. – Випуск 7

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/56131

Вісник Національного університету «Львівська політехніка»

Вісник Національного університету «Львівська політехніка» «Інформаційні системи та мережі» є правонаступником збірника наукових праць «Вісник Національного університету «Львівська політехніка». Серія: «Інформаційні системи та мережі» який започатковано у 1997 р. У журналі публікуються статті англійською та українською мовами. Вісник індексується в Google Scholar та Index Copernicus.

Вісник Національного університету «Львівська політехніка». Інформаційні системи та мережі / Національний університет "Львівська політехніка" ; відповідальний редактор В. В. Пасічник. – Львів : Видавництво Львівської політехніки, 2020. – № 7. – 108 с.

Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі

Зміст


1
8
16
24
35
42
51
59
70
78
87
107

Content


1
8
16
24
35
42
51
59
70
78
87
107

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Розробка штучної нейронної мережі з осциляторними нейронами для розпізнавання спектральних образів
    (Видавництво Львівської політехніки, 2020-02-24) Пелещак, Роман; Литвин, Василь; Пелещак, Іван; Висоцька, Вікторія; Peleshchak, Roman; Lytvyn, Vasyl; Peleshchak, Ivan; Vysotska, Victoria; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено новий тип штучної нейронної мережі з осциляторними нейронами, які мають власні частоти. За допомогою такої штучної нейронної мережі на основі інформаційного резонансу реалізовано новий метод розпізнавання мультиспектральних образів (мультиспектральних електромагнітних сигналів), що випромінюють динамічні об’єкти. Побудована нейронна мережа розпізнаватиме вхідні спектральні образи з амплітудою нестаціонарного сигналу, співвимірною з амплітудою сигналу шуму, завдяки резонансному ефекту в нелінійних осциляторних нейронах. Проведено комп’ютерний експеримент із розпізнавання мультиспектральних образів динамічною нейронною мережею на основі резонансного ефекту.
  • Thumbnail Image
    Item
    Методи ройового інтелекту вирішення прикладних задач в геоінформаційних системах
    (Видавництво Львівської політехніки, 2020-02-24) Литвин, Василь; Угрин, Дмитро; Lytvyn, Vasyl; Uhryn, Dmytro; Національний університет “Львівська політехніка”; Чернівецький філософсько-правовий ліцей № 2; Lviv Polytechnic National University; Chernivtsi Philosophical and Legal Lyceum № 2
    Запропоновано для автоматизації процедур формування множини альтернативних рішень та вибору раціонального рішення у галузевих ГІС використовувати інтелектуальних агентів планування діяльності з використанням онтологічного підходу. Запропоновано використовувати розроблену базу знань у галузі методів ройового інтелекту на основі адаптивної онтології та бази даних наукових публікацій у цій галузі. Всі прикладні задачі в галузевих геоінформаційних системах поділено на класи задач: стаціонарні, квазістаціонарні, динамічні. Запропоновано визначати вільні параметри для окремих ройових алгоритмів на основі машинного навчання з підкріпленням, а саме методом Q-Learning. На основі цього методу побудовано ланцюги Маркова для ройових алгоритмів. Підкріплення полягало в аналізі отриманих результатів певним ройовим алгоритмом експертним шляхом. На прикладі адміністративно-територіального управління було знайдено оптимальні значення параметрів окремих ройових алгоритмів.