Ukrainian Journal of Mechanical Engineering And Materials Science. – 2020. – Vol. 6, No. 3/4

Permanent URI for this collection

Науковий журнал

Засновник і видавець Національний університет «Львівська політехніка». Виходить двічі на рік з 2015 року.

Ukrainian Journal of Mechanical Engineering and Materials Science = Український журнал із машинобудування і матеріалознавства : науковий журнал / Lviv Politechnic National University ; editor-in-chief Oleksiy Lanets . – Lviv : Lviv Politechnic Publishing House, 2020. – Volume 6, number 3/4. – 52 p.

Browse

Recent Submissions

Now showing 1 - 5 of 6
  • Item
    Research and simulation of the machining process of difficult-to-cut materials
    (Lviv Politechnic Publishing House, 2020) Stupnytskyy, Vadym; Xianning , She; Lviv Polytechnic National University
    Heat-resistant and high-alloy steels and alloys are difficult materials to machine. Optimizing the cutting parameters for such materials is a complex and multi-factorial technological process planning task. The paper describes the method of analysis of loading, thermodynamic and stress-strain state of a workpiece while cutting of typical representative of hard-to-cut materials (chromium-nickel alloy IN718) using finite element simulation. Influence of feed rate on cutting force and temperature in the zone of chip formation is given. The paper also analyzes the effect of cutting edge geometry on the thermal and stress state of the workpiece during cutting. Based on the conclusions about the simulation results, an analogy can be made with the processing of such materials. This will significantly reduce the time of technological preparation and decrease the cost of experimental studies.
  • Item
    Influence of heat treatment modes on the performance characteristics of resistive cermet coatings
    (Lviv Politechnic Publishing House, 2020) Kovbasiuk, Taras; Duriagina, Zoia; Kulyk, Volodymyr; Pleshakov, Eduard; Kushpir, Vasyl; Lviv Polytechnic National University
    Dielectric and resistive coatings based on glass ceramics with nickel boride additives have been synthesized. It was found that the microstructure of the resistive coating consists of a large number of phases. X-ray fluorescence analysis revealed the presence of Ni and Cr borides in the structure of the resistive layer. It was found that the change in the structure and specific surface resistance of resistive pastes practically does not affect the temperature coefficient of resistance of the synthesized resistive tracks.
  • Item
    Mechanisms of structural-phase transformations during crystallization of a solder melt
    (Lviv Politechnic Publishing House, 2020) Kuzey, Anatoliy; Lebedev, Vladimir; Slipchuk, Andrii; Tsykunov, Pavel; Yurchyshyn, Igor; State scientific institution “Physical-Technical Institute of the national academy of sciences of Belarus”; Lviv Polytechnic National University
    Problem statement. An important requirement is quality assurance of joining materials with minimal overheating of materials, lowering the soldering temperature and suppressing the interaction of the solder with the materials to be soldered. The heating of the solder and the holder should be as uniform as possible and with a minimum temperature difference along the depth. One solution may be to develop more efficient solders and fluxes, adapted to the high heating rates that are typical when using high frequency currents Purpose. Thus, the problems of uniform heating of parts during brazing are relevant. This is necessary for optimal distribution of the electromagnetic field in the contact area Methodology. The effect of the heating rate was investigated. The composition of the flux and solders on the microstructure of the solders and the brazed seam was performed on the joints of HV510 (DIN), HS345 (DIN), HG30 (DIN) hardmetal plates with steel holders made of 5135 (USA) steel with a section of 25×20. Results. The research of the processes showed that during the contact interaction of low-melting and refractory components of the solders, when the tool was soldered, the solder is formed in the seam and proceeds through several stages. Practical value. Contact interaction of copper-zinc melts with iron particles does not lead to complete dissolution of iron particles. This is explained to the low values of the solubility of iron in copper-zinc melts despite the fact that resistive heat release occurs in the particles. Such iron particles (iron-based alloy) act as a dispersed phase in the structure of the composite material.
  • Item
    Mathematical modeling of elastic state in a three-component plate containing a crack due to the action of unidirectional tension
    (Lviv Politechnic Publishing House, 2020) Zelenyak, Volodymyr; Kolyasa, Liubov; Klapchuk, Myroslava; Lviv Polytechnic National University
    Purpose. A two-dimensional mathematical model for the problem of elasticity theory in a three-component plate containing rectilinear crack due to the action of mechanical efforts is examined. As a consequence, the intensity of stresses in the vicinity of tops of the crack increases, which significantly affects strength of the body. This may lead to the growth of a crack and to the local destruction of a structure. Such a model represents to some extent a mechanism of destruction of the elements of engineering structures with cracks, we determined stress intensity factors (SIFs) at the tops of the crack, which are subsequently used to determine critical values of the tension. Therefore, the aim of present work is to determine the two-dimensional elastic state in plate containing an elastic two-component circular inclusion and crack under conditions of power load in the case of unidirectional tension of the plate perpendicular for the crack line. This makes it possible to determine the critical values of unidirectional tension in order to prevent crack growth, which will not allow the local destruction of the body. Methodology. The methods of studying two-dimensional elastic state body with crack as stress concentrators based on the function of complex variable method by which the problem of elasticity theory is reduced to singular integral equations (SIE) of the first and second kind, the numerical solution by the method of mechanical quadratures was obtained. Findings. In this paper two-dimensional mathematical model in the form of the system of two singular integral equations on closed contour (boundary of inclusion) and unclosed contour (crack) are obtained; numerical solutions of these integral equations were received by the method of mechanical quadratures; stress intensity factors at the tops of a crack are identify and explored to detect the effects of mechanical character. Graphical dependencies of SIFs, which characterize distribution of the intensity of stresses at the tops of a crack as functin of elastic properties of inclusion and also as function of the distance between crack and inclusion are obtained. This makes it possible to analyze the intensity of stresses in the vicinity of a crack's tops depending on the geometrical and mechanical factors, as well as to determine the limit of permissible values of unidirectional tension of the plate perpendicular to the crack line at which the crack begins to grow and the body being locally destroyed. It is shown that the proper selection of elastic characteristics of the components of three-component plate can help achieve an improvement in the strength of the body in terms of the mechanics of destruction by reducing SIFs at the crack's tops. Originality.Scientific novelty lies in the fact that the solutions of the new two-dimensional problems of elasticity for a specified region (plate containing an elastic two- component circular inclusion and a rectilinear crack) under the action of unidirectional tension of the plate perpendicular to the crack line are obtained. Practical value. Practical value of the present work lies in the possibility of a more complete accounting of actual stressed-strained state in the piecewise-homogeneous elements of a structure with cracks that work under conditions of different mechanical loads. The results of specific studies that are given in the form of graphs could be used when designing rational operational modes of structural elements. In this case, the possibility for preventing the growth of a crack through the appropriate selection of composite's components with the corresponding mechanical characteristics is obtained.
  • Item
    Topography of the strengthened cylindrical surface after frictional continuous treatment
    (Lviv Politechnic Publishing House, 2020) Gurey, Volodymyr; Lviv Polytechnic National University
    Friction treatment refers to methods of surface strengthening (hardening) of the parts’ working surfaces using highly concentrated energy sources. Concentrated energy flow is formed during high-speed friction of the tool on the treated surface in the area of their contact. A strengthened (reinforced) white layer with a nanocrystalline structure is formed in the surface layer of the treated surface. Friction treatment of cylindrical surfaces of samples made of steel 41Cr4 (hardening and low-temperature tempering) was made on a lathe, and the device for the autonomous drive of the strengthening tool was installed instead of a toolpost. The tool was used with a smooth working part and with transverse grooves on the working part. Experimental researches of the strengthened surfaces’ topography were carried out on a profilometer “TALYScan 150” (Taylor Hobson Ltd, UK). The obtained data were processed in the software “Digital Surf MountainsLab Premium 8.2”. After friction treatment by using the tool with transverse grooves on its working part on the treated surface more evenly distributed peaks than after friction treatment by using the tool with the smooth surface. Analysing the spectral density of the peak’s distribution on the treated surfaces, it can be noted that after friction treatment by using the tool with transverse grooves, the area of the spectra is the lowest in comparison with friction treatment by using the tool with a smooth working part. When using the tool with cross grooves on its working part during frictional treatment allows to receive the best parameters of quality of the treatment surface in comparison with frictional treatment by the tool with a smooth working part. The parameters of the load-bearing capacity curve of the surface treated by the tool with transverse grooves on its working surface are better than after frictional treatment by the tool with a smooth working part. The treated surface by the tool with transverse grooves has a more favourable surface for wear, which was confirmed by research on wear resistance.