Геодезія, картографія і аерофотознімання. – 2021. – Випуск 93

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/57459

Міжвідомчий науково-технічний збірник

У збірнику опубліковані статті за результатами досліджень інженерної геодезії, супутникової геодезії, геодезичної гравіметрії, картографії, фотограмметрії, дистанційного зондування Землі, геоінформатики, кадастру та моніторингу земель. Входить до Переліку наукових фахових видань з технічних наук, який затвержений МОН України.

Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник / Міністерство освіти і науки України, Національний університет «Львівська політехніка» ; відповідальний редактор К. Р. Третяк. – Львів : Видавництво Львівської політехніки, 2021. – Випуск 93. – 96 с. : іл. : ill.

Геодезія, картографія і аерофотознімання

Зміст


1
5
13
27
35
42
48
59
72
85
94

Content


1
5
13
27
35
42
48
59
72
85
94

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Item
    Methods of automated allocation of catchment basins according to digital elevation models (on the example of Skoliv district of Lviv region)
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Процик, Михайло; Четверіков, Борис; Дорожинський, Олександр; Іваневич, Андрій; Protsyk, Mykhailo; Chetverikov, Borys; Dorozhynskyy, Oleksandr; Ivanevych, Andrii; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Мета. Вдосконалити методику автоматизованого виділення водозбірних басейнів та отримання гідрологічних та морфометричних характеристик на базі цифрових моделей рельєфу. Методика і результати роботи. Необхідною умовою коректного визначення пониження рельєфу місцевості є наявність точок істинного потоку на краю розрахункової області (якщо річка впадає в озеро, то воно не повинно входити в розрахункову територію цілком, в іншому випадку будуть отримані невірні результати). За допомогою виконання операції визначення пониження рельєфу місцевості створюється нова ЦМР, яка не містить фіктивних понижень рельєфу. На наступному кроці вона використовується в якості вхідних даних для розрахунку напрямку потоку по алгоритму D8. За запропонованою технологічною схемою необхідно опрацювати покроково наступні шість блоків: заповнення замкнутих депресій, розрахунок напрямку стоку, розрахунок сумарного стоку, створення точкового векторного набору даних замикаючих створів (точок гирла), створення границь водозбірних басейнів, растрово векторне перетворення даних. В результаті експериментальних та теоретичних досліджень апробовано методику автоматизованого виділення водозбірних басейнів, а саме визначення гідрологічних та морфометричних параметрів рельєфу. Проведено ранжування басейнів за цими параметрами відповідно до існуючих класифікацій, складена серія відповідних тематичних електронних карт. Необхідно сказати, що в Сколівському районі Львівської області розташовано 590 водозбірних басейнів, а їхня площа становить 1407 км2. Водозбірні басейни класифіковані за вистою, а саме: низько-гірських басейнів в регіоні 6 шт, площа їх становить 7 км2; середньогірських – 360 шт, площа 755 км2; високо-гірських – 224 шт, площа 645 км2. Класифіковано басейни за середнім ухилом: перша категорія – це дуже пологі схили (0–3 градуси) – 27 басейнів, площа 7 км2; друга категорія – це покаті схили (9–12 градусів), 128 басейнів, площа 303 км2; третя категорія – це круті схили (12–15 градусів і більше), 225 басейнів, площа 648 км2. Проведено оцінку точності між опорною та вихідною моделлю рельєфу. Отримано для ухилів СКВ = 0,63 м, для висоти – СКВ = 5,43 м. Наукова новизна і практична значущість. Запропоновано технологічну схему автоматизованого виділення водозбірних басейнів за цифровими моделями рельєфу на прикладі Сколівського району Львівської області та опрацьовано методику виділення водозбірних басейнів. За опрацьованою методикою побудовані карти водотоків різних порядків та їх водозбірних басейнів і виконано класифікацію басейнів по площі на територію Сколівського адміністративного району. Ці результати можуть бути використані місцевими організаціями для моніторингу водних ресурсів.
  • Thumbnail Image
    Item
    Using a fuzzy impact assessment for the environment quality evaluation
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Максимова, Юлія; Бойко, Олексій; Maksymova, Yuliia; Boiko, Oleksii; Київський національний університет будівництва і архітектури; Київська обласна організація спілки архітекторів України; Kyiv National University of Construction and Architecture; Regional organization of the National Union of Architects of Ukraine
    Метою дослідження є розроблення моделей нечіткої оцінки впливу природних та антропогенних впливів, які дають можливість інтегрувати в собі різні за своєю фізичною природою фактори, що в свою чергу дає можливість приведення їх до єдиної системи оцінювання стану довкілля та порівняння стану різних оцінюваних територій. Методика. Основу запропонованого моделювання складає традиційний підхід до проектування таких моделей, що включає рівні концептуального, логічного та фізичного моделювання. Для концептуального моделювання використано уніфіковану мову моделювання UML (Unified Modeling Language), яка рекомендована як основний засіб моделювання в комплексі міжнародних стандартів з географічної інформації / геоматики та програмний засіб, що підтримує інтерактивний режим створення UML-діаграм Visio. Для розглянутих моделей реалізовано базу геопросторових даних та SQL-функції, використано розширення стандартної мови SQL99 новим типом даних geometry і вбудованими функціями, що забезпечують зберігання, опрацювання і аналіз геопросторових даних в системах керування базами даних. Запропоновані моделі в дослідженні реалізовано у середовищі об’єктно-реляційної СКБД PostgreSQl/Postgis та геоінформаційної системи QGIS. Результати. Виконано огляд досвіду застосування нечіткої логіки для оцінки стану довкілля. Запропоновано та реалізовано технологічні моделі для розрахунку показників забезпеченості досліджуваної адміністративної одиниці об’єктами соціальної інфраструктури, впливу зелених насаджень та промислових об’єктів і транспорту на навколишнє середовище. Наведено приклад апробації запропонованого підходу на основі відкритих даних OpenStreetMaps для території Попаснянського району Луганської області. Наукова новизна. В роботі виконано теоретичні узагальнення та одержано практичні результати вирішення прикладної задачі розроблення моделі нечіткої оцінки впливу різних факторів на навколишнє середовище з використанням ГІС. Така оцінка може застосовуватись на етапі розробки стратегій просторового розвитку громади, для визначення найбільш прийнятного варіанту розвитку, а також для уніфікації засобів моніторингу реалізації стратегій, органічно пов’язуючи між собою локальні, національні та глобальні завдання. Практична значущість. Застосування запропонованого підходу щодо використання ГРІД-моделювання та нечіткої оцінки впливу при оцінці якості навколишнього середовища дозволяє інтегрувати в собі різні показники, порівнювати їх шляхом приведення до єдиної системи оцінювання
  • Thumbnail Image
    Item
    Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Паляниця, Богдан; Кладочний, Богдан; Паляниця, Оксана; Palianytsia, Bohdan; Kladochnyi, Bohdan; Palianytsia, Oksana; Національний університет “Львівська політехніка”; Львівський національний університет ім. Івана Франка; Lviv Polytechnic National University; Ivan Franko National University of Lviv
    Мета цієї роботи – побудувати 3D моделі складових зенітної тропосферної затримки (ZTD) за даними приземних вимірів метеорологічних величин, отриманих на 100 пунктах, що майже рівномірно розташовані на території України. Методика. Суха та волога складові зенітної тропосферної затримки обчислені за формулами Saastamoinen. За отриманими результатами складено поля сухої і вологої складових тропосферної затримки, побудовано поля їхньої зміни із використанням різної кількості досліджуваних пунктів. Також з допомогою графічного редактора побудовано 3D моделі одномоментного розподілу величини сухої та вологої складових зенітної тропосферної затримки для території України. Результати. Результатом роботи є побудовані 3D моделі складових ZTD; побудовані поля зенітної тропосферної затримки для території України; виконане порівняння розподілу складових затримки для вказаної території та її зміни протягом доби. Встановлено, що суха складова набуває більшого значення на південній та центральній території України, де пункти спостережень розташовані нижче за висотою, і де є більшим атмосферний тиск, який домінує при обчисленні цієї складової. Відповідно волога складова є більшою також у південній частині України, але це зумовлено вищою відносною вологістю. У результаті ущільнення мережі до 100 пунктів отримано точніші моделі розподілу складових, що дало змогу детальніше оцінити значення тропосферної затримки для території України. Подальше ущільнення мережі для території України не спричинило очікуваного підвищення точності визначення тропосферної затримки, оскільки недостатньо рівномірним є розташування метеостанцій на території країни, і деякі значення метеорологічних величин отримані не безпосередніми вимірюваннями, а методом інтерполяції. Для отримання детальнішої моделі необхідно рівномірно ущільнювати модель пунктами з надійними метеорологічними вимірюваннями, а для контролю використовувати обчислення складових інтегруванням за даними аерологічних зондувань, проведених на окремих пунктах. Наукова новизна полягає у побудові 3D моделей складових тропосферної затримки для території України на певний момент часу. Практична значущість виконаних досліджень у тому, що вони можуть використовуватися як початковий крок для побудови просторово-часової моделі тропосферної затримки, яка відображала б просторові зміни затримки у реальному часі для певної території
  • Thumbnail Image
    Item
    Deformations of the land crust of the Carpathian region according to the data of GNSS observation
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Доскіч, Софія; Doskich, Sofiia; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Поява супутникових геодезичних спостережень ознаменувалася їх широким використанням для визначення швидкостей і спрямованості горизонтальних рухів літосферних плит (сучасної кінематики літосферних плит), що дозволило вивчати деформаційні процеси на глобальному і регіональному рівні. Сьогодні постійно діючими GNSS станціями покрита значна частина території суші. Оскільки багато з цих станцій накопичили великий обсяг щоденних вимірювань періодом до 20 років, з’являється можливість відстежити деформаційні процеси певних територій. Звісно ж, залишається проблема правильної ідентифікації результатів спостережень за істинними параметрами деформаційного процесу. Це питання потребує спільної роботи геофізиків та геодезистів. Але високоточні часові ряди координат і значення швидкостей зміщень GNSS станцій є важливими і перспективними даними для інтерпретації геодинамічних процесів, отримання яких є набагато простіше, ніж геофізичні чи геологічні дані, не потребує спеціальних затрат і активно розвивається, тобто кількість таких станцій стрімко збільшується. Сьогодні за неофіційними даними на території України працює вже більше 300 референцних станцій. Мета – виявити деформації земної кори на території Карпатської складчастої системи за допомогою GNSS технології. Вхідними даними для дослідження слугували результати спостережень тривалістю вісім років (2013–2020 pр.) на референцних станціях України (мережа ZAKPOS). З цих спостережень за допомогою наукового програмного забезпечення GAMIT/GLOBK обчислено об’єднаний в часі розв’язок (часові ряди координат та швидкості змін координат). За отриманими даними побудовано вектори горизонтальних зміщень GNSS станцій, та обчислено деформації земної кори методом трикутників, вершинами яких є GNSS станції, за допомогою програмного забезпечення “GPS Triangle Strain Calculator”. Обчислені значення деформацій показали різну геодинамічну картину в залежності від розташування трикутників. Зокрема, виділено активні зони розтягу (Рахів–Верховина та Сянок–Устрики–Долішні) та стиснення (Рахів–Хуст–Мукачево). Результати проведених дослідження дають можливість встановити особливості просторового розподілу руху земної кори в Карпатському регіоні та в майбутньому при спільній інтерпретації з геофізичними даними створити регіональну геодинамічну модель Карпатської складчастої системи.
  • Thumbnail Image
    Item
    The issue of determining of the geodesic center of Ukraine in the context of evolution of centrographic research
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Кисельов, Юрій; Шемякін, Михайло; Боровик, Петро; Кононенко, Сергій; Мельник, Маргарита; Kyselov, Yurii; Shemiakin, Mykhailo; Borovyk, Petro; Kononenko, Serhii; Melnyk, Marharyta; Уманський національний університет садівництва; Uman National University of Horticulture
    Метою досліджень є обґрунтування наукового й практичного значення обчислення центрів територій держав і регіонів, проведення історичного огляду центрографічних досліджень у світі й в Україні в контексті еволюції їх методики, встановлення геодезичних координат множини точок, що лежать на лінії сухопутного Державного кордону і береговій лінії морів та визначення центру ваги території України як центру тяжіння ламаного полігона, утвореного контурами території держави (геодезичного центру України). Методи. При обчисленні геодезичного центру України використано, у власній інтерпретації авторів, методику визначення центру ваги території, запропоновану Ж.-Ж. Аффольде й апробовану ним при встановленні центру Європи. Результати. Історія центрографічних досліджень нараховує понад 250 років, але тільки в останні пів сторіччя вони набули власне наукового характеру, ставши на міцну геодезичну базу. Наведено основні віхи у становленні центрографічного напрямку в контексті визначення центрів територій низки провідних держав світу й еволюції методики досліджень. Встановлено, що необхідно розрізняти геометричний, географічний і геодезичний центри територій, що розрізняються за способом визначення й рівнем точності, продиктованим вимогами до проведення обчислень. Кожен із визнаних центрів території України має власне значення та обґрунтування. Наукова новизна. Здійснено історичний огляд визначення центрів територій у світі й в Україні. Запропоновано метод обчислення центру ваги території України, як центру ламаного полігона, утвореного її контурами, в тому числі сухопутним Державним кордоном і береговою лінією. Запроваджено поняття “геодезичний центр” для позначення центру ваги території, що описує багатокутну, в тому числі неправильну фігуру. Встановлено місце розташування й точні координати геодезичного центру України, локалізованого в Новоукраїнському районі Кіровоградської області. Практичне значення. Уточнення місцезнаходження центрів територій має значення з погляду оптимізації розміщення об’єктів виробництва та інфраструктури, а також як потенційних об’єктів туризму. Методики, застосовані при обчисленні центрів території України, можуть бути використані не лише при проведенні аналогічних досліджень для адміністративних областей, а й новоутворених районів, об’єднаних територіальних громад тощо.
  • Thumbnail Image
    Item
    Method for of detecting short-term displacements of the Earth's surface by statistical analysis of GNSS time series
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Третяк, Корнилій; Брусак, Іван; Tretyak, Kornyliy; Brusak, Ivan; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Короткотривалі геодинамічні зміщення земної поверхні сьогодні недостатньо вивчені, адже їх однозначна ідентифікація є досить складною задачею. Такі геодинамічні процеси можна помітити, розглядаючи ряди спостережень GNSS станцій тривалістю до 2 місяців, а при порівнянні річних рядів ці зміщення координат візуально практично непомітні. З метою пошуку таких короткотривалих геодинамічних зміщень земної поверхні у цій роботі розроблений метод їх виявлення за статистичним аналізом часових серій GNSS станцій. Запропонований метод, який полягає у пошуку ковзаючих кореляційних і коваріаційних зв’язків між часовими рядами двох GNSS станцій за короткі періоди, що зміщуються вздовж усієї часової серії. Такий підхід дозволяє за виділенням аномальних зміщень окремих GNSS станцій показати характер зміщень на усій досліджуваній території. Високий коефіцієнт кореляції між рядами станцій свідчить про наявність одночасних та однакових за абсолютною величиною зміщень. Високе значення коваріації свідчить про синхронність та однонаправленість таких зміщень. У результаті за представленою методикою досліджено часові ряди 8-ми GNSS станцій мережі Geoterrace за період з кінця 2017 до початку 2021 року. Досліджено ймовірний аномальний висотний зсув на цій території на момент 185 дня 2018 року. За результатами опрацювання GNSS станцій побудовано карти просторового розподілу коефіцієнтів кореляції та коваріації. Запропоновану методику доцільно вдосконалювати та застосувати для дослідження кінематичних процесів на територіях з густою мережею GNSS станцій та тривалими часовими рядами спостережень. Це можуть бути GNSS мережі, призначені для моніторингу великих інженерних об’єктів, таких як ГЕС, ГАЕС.
  • Thumbnail Image
    Item
    Automation of the measurement procedure in the mechanical north-seeking gyroscope
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Лопатін, Ярослав; Гегер, Вільгельм; Lopatin, Yaroslav; Heger, Wilhelm; Національний університет “Львівська політехніка”; Вища школа Нойбранденбурга; Lviv Polytechnic National University; Neubrandenburg University of Applied Sciences
    Мета роботи полягає у розробці автоматизованої вимірювальної системи в механічному гірокомпасі за допомогою спеціально розробленого апаратного та програмного забезпечення для того, щоб полегшити експлуатацію приладу та мінімізувати похибки спостерігача. Розроблений комплекс передбачає автоматизацію лише для часового методу, оскільки для методу поворотної точки необхідно постійно контактувати з навідним гвинтом тахеометра. В основі проєкту – інтегрована система, апаратна частина якої містить одноплатний комп’ютер, камеру та об’єктив, а в основі програмного забезпечення – розроблений алгоритм розпізнавання руху із застосуванням технологій обробки зображення. Цей алгоритм створений за допомогою мови програмування Python та Computer Vision бібліотеки з відкритим початковим кодом OpenCV. За допомогою апаратної частини отримується відеозображення відлікової шкали гіроскопа, а за допомогою програмного забезпечення на цьому зображенні ідентифікується рухомий світловий індикатор та його позиція відносно шкали. Результатом дослідження є функціонуюча автоматична система вимірювання, яка визначає значення азимута напрямку з такою ж точністю, що й мануальні вимірювання. Система керується дистанційно за допомогою комп’ютера через wi-fi мережу. Для перевірки системи проведено серію автоматичних та мануальних вимірювань, які виконувались одночасно в одному й тому самому пункті для одного й того самого напрямку. На основі отриманих результатів можна стверджувати, що точність системи є в межах, зазначених виробником приладу для мануальних вимірювань. Застосування технології комп’ютерного зору, а саме відстеження рухомого об’єкта на зображенні для гіроскопічних вимірювань може дати відчутний поштовх для питання розробки систем автоматизації вимірювань для широкого спектра вимірювальних приладів, що своєю чергою може призвести до покращення точності результатів вимірювання. Розроблена система може застосовуватись разом з гірокомпасом Gyromax AK-2M фірми GeoMessTechnik для проведення автоматизованих вимірювань, навчання нових операторів. За допомогою розробленої моделі можна уникнути грубих похибок спостерігача, полегшити процес вимірювання, який не вимагатиме постійної присутності оператора біля приладу. В деяких небезпечних умовах це є суттєвою перевагою.
  • Thumbnail Image
    Item
    About modernization of Ukrainian height system
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Тревого, Ігор; Заблоцький, Федір; Piskorek, Анджей; Джуман, Богдан; Вовк, Андрій; Trevoho, Ihor; Zablotskyi, Fedir; Piskorek, Andrzej; Dzhuman, Bohdan; Vovk, Andriy; Національний університет “Львівська політехніка”; Geokart-International, Sp. z o.o; Lviv Polytechnic National University; Geokart-International, Sp. z o.o
    Мета. Метою цієї роботи є встановлення зв’язків між Балтійською та Європейською системами висот на основі проведення нівелювання І класу між українськими та польськими контрольними пунктами базової висотної мережі та побудова поверхні квазігеоїда на прикордонну територію. Методика. Повноцінна інтеграція висотної системи України у Європейську вертикальну референцну систему складається з двох етапів: модернізації висотної мережі України шляхом її інтеграції в Об’єднану європейську нівелірну мережу UELN; побудови та використання в якості регіонального вертикального датуму моделі високоточного квазігеоїда, яка узгоджуватиметься з Європейським геоїдом EGG2015. Виконано аналіз методики нівелювання високих класів в Україні та Польщі, а також аналіз методик побудови моделей квазігеоїда в цих країнах. Результати. Для інтеграції української висотної системи в систему UELN/EVRS2000 українською стороною виконано геометричне нівелювання І класу за двома лініями: Львів–Шегині–Перемишль та Ковель–Ягодин-Хелм загальною протяжністю 196 км. Середня квадратична систематична похибка по обох лініях нівелювання становить s<0.01 мм/км. Своєю чергою, середня квадратична випадкова похибка по лінії Львів-Шегині–Перемишль рівна h=0.29 мм/км, а по лінії Ковель–Ягодин–Хелм – h=0.27 мм/км. Для подвійного контролю на транскордонній частині польською стороною виконано високоточне нівелювання протяжністю 33 км. Розходження між українським та польським нівелюванням по всіх секціях є в межах допуску. Проведено аналіз впливу геодинамічних явищ на контроль високоточного нівелювання. На всіх фундаментальних та ґрунтових реперах, а також горизонтальних марках виконано GNSS-нівелювання. Ці виміри використано для побудови моделі квазігеоїда на прикордонну територію України. СКП отриманої моделі квазігеоїда становить близько 2 см, що відповідає точності вхідної інформації. Наукова новизна і практична значущість. З’єднання української та європейської систем висот забезпечить інтеграцію України в європейську економічну систему, участь в міжнародних наукових дослідженнях глобальних екологічних і геодинамічних процесів, вивчення фігури Землі та гравітаційного поля, картографування території України з використанням навігаційних супутникових технологій та дистанційного зондування. Обчислення високоточної моделі квазігеоїда на територію України відносно європейської системи висот, узгодженої з європейським геоїдом EGG2015, дасть змогу отримувати гравітаційно залежні висоти з використанням сучасних супутникових технологій.
  • Thumbnail Image
    Item
    On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Бурак, Костянтин; Ярош, Костянтин; Burak, Kostyantyn O.; Yarosh, Kostiantyn; Івано-Франківський національний технічний університет нафти і газу; Одеський національний політехнічний університет; Ivano-Frankivsk National Technical University of Oil and Gas; Odessa National Polytechnic University
    Мета цієї роботи – теоретично обґрунтувати необхідність продовження робіт в Україні зі створення зенітних систем та астрономо-геометричного нівелювання з використанням Глобальних навігаційних супутникових систем (ГНСС) та приладів, які забезпечують точність вимірів відхилень виска 0,1– 0,2", для вивчення неотектонічних процесів як на геодинамічних полігонах, так і техногенних, які створюють для побудови геодезичної основи для будівництва та експлуатації надзвичайно важливих об’єктів. Методику досягнення мети забезпечено теоретичними дослідженнями існуючих способів астрономо-геометричного нівелювання, сучасних методів прогнозу неотектонічних процесів, точності ГНСС та геометричного нівелювання. Основні результати – встановлено теоретичну можливість використання повторного астрономо-геометричного нівелювання для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, контролю результатів геометричного і ГНСС нівелювання. Наукова новизна: теоретично обґрунтовано можливість використання повторного астрономогеометричного нівелювання спеціально створених профілів на геодинамічних полігонах для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, з якими сучасні наукові гіпотези пов’язують можливість прогнозу землетрусів, контролю ГНСС і геометричного нівелювання з використанням геоїдальної складової на цих профілях, ідея синхронних спостережень з використанням зеніт систем при астрономо-геометричному нівелюванні.
  • Thumbnail Image
    Item
    Зміст до “Геодезія, картографія і аерофотознімання”
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12)