Energy Engineering and Control Systems. – 2019. – Vol. 5, No. 2

Permanent URI for this collection

Науковий журнал

Засновник і видавець Національний університет «Львівська політехніка». Виходить двічі на рік з 2015 року.

Energy Engineering and Control Systems = Енергетика та системи керування : науковий журнал / Lviv Politechnic National University ; editor-in-chief Yevhen Pistun. – Lviv : Lviv Politechnic Publishing House, 2019. – Volume 5, number 2. – P. 57–119.

Зміст (том 5, № 2)


57
66
75
81
89
94
108

Content (Vol. 5, No 2)


57
66
75
81
89
94
108

Browse

Recent Submissions

Now showing 1 - 7 of 7
  • Item
    Mathematical Models of Throttle Elements of Gas-hydrodynamic Measuring Transducers
    (Lviv Politechnic Publishing House, 2019-02-26) Пістун, Євген; Матіко, Галина; Крих, Ганна; Pistun, Yevhen; Matiko, Halyna; Krykh, Hanna; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У статті наведено витратні характеристики дросельних елементів, які застосовують у вимірювальних схемах перетворювачів параметрів плинних середовищ. Огляд охоплює широке коло досліджень характеристик нестискуваних та стискуваних, ньютонівських та неньютонівських середовищ в умовах ламінарного, перехідного та турбулентного режиму руху в каналах різного поперечного перерізу. Розглянуто рівняння, що застосовуються для макроскопічних потоків. Наведено теоретичні рівняння для розрахунку перепаду тиску під час руху середовищ у мікроканалах та зазначено умови та діапазон їхнього застосування. Розглянуто експериментальні результати дослідження коефіцієнтів тертя для стискуваних і нестискуваних середовищ в мікроканалах різних розмірів та форми, з гладкими і шорсткими поверхнями. Отримані результати можна застосовувати для комп’ютерного дослідження статичних і метрологічних характеристик газогідродинамічних вимірювальних перетворювачів конкретних фізико-механічних параметрів.
  • Item
    Methodology for Determining the Response Time of Thermo Transducers for Measuring the Temperature of Gas Flows
    (Lviv Politechnic Publishing House, 2019-02-26) Фединець, Василь; Fedynets, Vasyl; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Температура газових потоків є важливим параметром технологічного процесу, визначає кількісні і якісні показники вихідного продукту, наявність браку, стан технологічного обладнання, а також безпеку функціонування процесу. Тому вимірювання її необхідно проводити неперервно, з високою точністю, невеликою інерційністю і високою надійністю, оскільки інформативний сигнал про значення температури використовується в інформаційно-вимірювальних системах та автоматичних системах контролю та регулювання. При вимірюванні змінної в часі температури газового потоку термоперетворювач (ТП) не встигає стежити за зміною температури, оскільки для зміни температури його чутливого елемента потрібен деякий час. Спотворення показів ТП через нестаціонарності теплових процесів і в самому ТП, і між ним і навколишнім середовищем обумовлені його інерційними властивостями (термічною реакцією). Завдяки цим властивостям виникає додаткова різниця між температурою чутливого елемента і температурою газового потоку, яка визначає динамічну похибку вимірювання температури потоку. В статті запропоновано методику визначення інерційних властивостей ТП для різних швидкостей газового потоку за виміряним значенням при одній базовій швидкості потоку.
  • Item
    Equation of Arithmetic Mean Deviation of Roughness Profile
    (Lviv Politechnic Publishing House, 2019-02-26) Лесовой, Леонід; Матіко, Федір; Чабан, Богдан; Lesovoy, Leonid; Matiko, Fedir; Chaban, Bohdan; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Для підвищення точності вимірювання витрати газу за допомогою витратомірів змінного перепаду тиску необхідно застосувати залежності для визначення коефіцієнтів рівняння витрати газу, що забезпечать найменшу відносну сумарну розширену невизначеність розрахунку та збільшать точність вимірювання вхідних величин у реальному часі. Однією з таких величин є середнє арифметичне відхилення профілю шорсткості внутрішньої поверхні трубопроводу. Отримано рівняння для розрахунку середнього арифметичного відхилення профілю шорсткості внутрішньої поверхні труби в реальному часі. Отримано рівняння для розрахунку відносної сумарної розширеної невизначеності результату вимірювання середнього арифметичного відхилення профілю шорсткості внутрішньої поверхні трубопроводу в реальному часі та складників цієї невизначеності.
  • Item
    Overvoltages in MV Industrial Grid under Ground Faults
    (Lviv Politechnic Publishing House, 2019-02-26) Варецький, Юрій; Varetsky, Yuriy; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Електричні розподільні мережі середньої напруги здебільшого працюють із незаземленими нейтральними точками трансформаторів. Філософія цих електричних мереж основана на припущенні, що вони є більш надійними, ніж мережі з заземленою нейтраллю. Однак перехідні струми однофазних або багатократних замикань на землю, які в основному залежать від ємності фаз на землю використовуваних кабелів, що підключені до шин підстанцій електромережі, часто мають переривчастий характер унаслідок виникнення дуги. Більше того, такий тип дугового замикання на землю в незаземленій системі спричиняє значно вищі від номінальних перехідні перенапруги. Як наслідок, це може бути небезпечним для електричних пристроїв, підключених до цієї енергосистеми. Стаття присвячена перехідним перенапругам на електроприводах з регульованою швидкістю, які виникають унаслідок замикань на землю в промисловій мережі. Для моделювання перехідних процесів у системі під час переривистих замикань використовувалося програмне забезпечення Matlab/Simulink.
  • Item
    Thermoeconomic Model of Air Conditioning System
    (Lviv Politechnic Publishing House, 2019-02-26) Жихарєва, Наталія; Хмельнюк, Михайло; Zhykharieva, Nataliia; Khmelniuk, Mykhailo; Одеська національна академія харчових технологій; Odessa National Academy of Food Technologies
    Розроблено математичну модель системи кондиціювання повітря, яка ґрунтується на аналізі термоекономічних показників енергоефективності та вирішена в комплексі: визначення оптимальних параметрів; з врахуванням нестаціонарних теплоприпливів та визначення оптимального пристрою з оптимізації режимів роботи холодильної системи. При проектуванні системи кондиціювання повітря проведений термоекономний аналіз створюваного об’єкта, вирішуючи актуальну задачу енергозбереження з урахуванням зміни тарифів на електроенергію. Розроблена термоекономічна модель холодильної установки системи кондиціювання повітря з визначенням ексергетичних показників і ексергетичних втрат, як складових критерію термодинамічної ефективності енергетичних систем, що забезпечують мінімум приведених витрат. Аналіз моделі дав змогу отримати аналітичне рішення, на підставі якого визначаються оптимальні умови проектування цієї системи кондиціювання і режими її експлуатації.
  • Item
    Analysis of Modes of Asynchronized Generator in Extra-High Voltage Power Grid
    (Lviv Politechnic Publishing House, 2019-02-26) Покровський, Костянтин; Маврін, Ольгерд; Музичак, Андрій; Олійник, Володимир; Pokrovskyi, Kostiantyn; Muzychak, Andriy; Mavrin, Olgerd; Oliinyk, Volodymyr; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Застосування мереж надвисокої напруги призводить до низки проблем з компенсацією надлишкової реактивної потужності. Варіантом розв’язання таких проблем може бути застосування асинхронізованих генераторів, які мають ряд переваг перед традиційними синхронними генераторами. Ці переваги здебільшого проявляють себе в умовах роботи генератора у мережах із надлишковою реактивною потужністю. Типовим прикладом такої мережі є мережа надвисокої напруги “Острова БуТЕС” та енергомоста “Україна- ЄС”. У роботі наведено результати математичного моделювання режимів мережі “Енергомоста “Україна – ЄС”. Координати режимів визначалися для різних варіантів схеми та режимів роботи генератора. Отримані результати доводять можливість та ефективність пропонованого технічного рішення.