Computational Problems Of Electrical Engineering. – 2021. – Vol. 11, No. 2

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/58461

Науково-технічний журнал

Засновник і видавець Національний університет «Львівська політехніка». Виходить двічі на рік з 2011 року.

Computational Problems of Electrical Engineering = Обчислювальні проблеми електротехніки : науково-технічний журнал / Lviv Politechnic National University ; editor-in-chief Yuriy Bobalo. – Lviv : Lviv Politechnic Publishing House, 2021. – Volume 11, number 2. – 58 p.

Зміст


1
12
18
26
32
38
43
45

Content (Vol. 11, No 2)


1
12
18
26
32
38
43
45

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Multilayer Neural Networks – As Determined Systems
    (Видавництво Львівської політехніки, 2021-10-10) Свелеба, Сергій; Бригілевич, Володимир; Катеринчук, Іван; Куньо, Іван; Карпа, Іван; Семотюк, Остап; Шмигельський, Ярослав; Свелеба, Назар; Sveleba, Sergii; Brygilevych, Volodymyr; Katerynchuk, Ivan; Kuno, Ivan; Karpa, Ivan; Semotiuk, Ostap; Shmyhelskyy, Yaroslav; Sveleba, Nazar; Ivan Franko National University of Lviv; State Higher School of Technology and Economics in Jarosław, Poland; Ukrainian Academy of Printing
    В роботі досліджено вплив швидкості навчання (η) на процес навчання багатошарової нейронної мережі. Програма для багатошарової нейронної мережі була написана мовою Python. Швидкість навчання розглядалась як постійна величина і визначалась її оптимальна величина, за якої досягалось найкраще навчання. Для аналізу впливу швидкості навчання використовувалась логістична функція, яка описує процес навчання. Показано, що функція похибки навчання характеризується біфуркаційними процесами, які призводять до хаотичного стану, якщо η>0,8. Визначено оптимальне значення швидкості навчання, яке визначає появу процесу подвоєння кількості локальних мінімумів, і становить для тришарової нейронної мережі з 4 нейронами в кожному шарі η=0,62. Збільшення кількості прихованих шарів (3÷30), та кількості нейронів у кожному шарі (4÷150) не приводить до кардинальної зміни діаграми логістичної функції (xn,η), а отже, і оптимальної величини швидкості навчання.