Ukrainian Journal of Mechanical Engineering and Materials Science. – 2016. – Vol. 2, No. 2
Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/39122
Науковий журнал
Засновник і видавець Національний університет «Львівська політехніка». Виходить двічі на рік з 2015 року.
Ukrainian Journal of Mechanical Engineering and Materials Science = Український журнал із машинобудування і матеріалознавства : науковий журнал / Lviv Politechnic National University ; editor-in-chief Oleksiy Lanets. – Lviv, 2016. – Volume 2, number 2. – 108 p. : il. – Паралельна назва англійською.
Browse
Search Results
Item Two-mass vibratory conveyor-manipulator with three-component electromagnetic drive(Publishing House of Lviv Polytechnic National University, 2016) Vrublevskyi, ІgorVibratory conveyor with three-component oscillations provides the opportunity to move the piece goods and details for any trajectory on a plane. Phase difference between independent horizontal (longitudinal or transverse) and vertical (normal) oscillations releases elliptical vibration of conveyor in plane perpendicular to the conveyor’s track. Elliptical vibrations allow increasing conveying velocity and inclination angle of conveyor’s track in comparison with the simplest linear vibrations. Three-component oscillations of the conveyor’s track are implemented by independent exciters of oscillations in the direction of conveying (longitudinal oscillations), oscillations in the direction perpendicular to conveying in plane (transverse oscillations) and oscillations in the direction perpendicular to conveying plane (normal oscillations) with phase difference between them. Conveying velocity of details moving upon the track varies with the change of phase difference angle and reaches a maximum with a certain angle, depending on several parameters. When electromagnetic exciters of longitudinal and normal oscillations are turned on, conveying details move in longitudinal direction. When electromagnetic exciters of transverse and normal oscillations are turned on, conveying details move in transverse direction. When electromagnetic exciters of longitudinal and transverse oscillations are turned on, conveying details rotate around their axes. When all three exciters are turned on, conveying details move at any trajectory. The change in the ratio of longitudinal and transverse amplitudes and phase difference angles between them allows changing the trajectory of details moving on conveyor’s track, making them not only move forward but rotate as well. That’s why such conveyor can be called a manipulator. The resilient system of two-mass vibratory conveyor-manipulator with three-component oscillations should have elastic pliability in three mutually perpendicular directions. It includes four resilient elements; each of them consists of two latticed leaf springs, fixed at the right angle to each other. The working body with conveying track is joined with reactive frame by resilient elements. Electromagnetic drive includes four electromagnetic exciters of longitudinal oscillations, four electromagnetic exciters of transverse oscillations and one electromagnetic exciter of normal oscillations. The bodies of electromagnets are fixed on the reactive frame and their anchors are fixed on the working body of conveyor-manipulator. A block diagram of the electrical control of conveyor-manipulator is referred. A voltage is supplied from two phases of threephase electricity to the coils of electromagnets through diodes, auto-transformers, switches and phase-shifter. The amplitudes of oscillations are regulated with aid of auto-transformers, phase difference between them and the change of conveying modes are carried by switches and phase-shifter. The oscillating system of vibratory conveyor-manipulator has six degrees of freedom and respectively six frequencies of natural oscillation. The formulas for calculating the vibratory conveyor-manipulator’s frequencies of natural oscillation are derived. Vibratory conveyor-manipulator with three-component electromagnetic drive was designed and manufactured. Its research and testing show the possibility of conveying details and piece goods at any trajectory.Item Ways of improvement of operational efficiency of hopper devices(Publishing House of Lviv Polytechnic National University, 2016) Koruniak, Petro; Shenbor, Vladyslav; Korendiy, Vitaliy; Bezpalov, Anatoliy; Brusentsov, VolodymyrThe operation of hopper devices, which are used in industry, civil engineering, agriculture and transport, is analyzed on the article. The external factors, which influence the process of charging, storing and discharging of loose cargo (freights) from hopper tanks, are overviewed. The subject of research of presented paper is the improvement of mechanisms of fracturing of products hangs-up (bridges) in hoppers at the stage of designing and setting up of hopper devices. In order to solve the stated problem the schemes of bridges fracturing and the structures of devices for debarment of products bridging and their uniform outflow from the hopper tank are proposed. The proposed schemes are based on the principles used in development of vibratory machinery with mechanical, cam and electromagnetic vibratory principles of structures forming. For cam spring device of bridges fracturing the technique of calculation of stiffness of elastic system and of the necessary forces for performing of technological process of bridges fracturing is presented and the recommendations for choosing of the stiffness of the system of elastic elements are suggested. For the hoppers with spring and electromagnetic blocks of bridges fracturing and of metered (batched) feeding of products the structural diagrams of devices are presented and the recommendations for usage of various modifications of devices are suggested. The influence of parameters of flat spring elements on the efficiency of devices operation is overviewed. The structural diagrams of devices with one-cycle and two-cycle electromagnetic vibration exciters and the modifications of elastic systems are considered. the structural diagram of the production prototype of the hopper feeder is presented. The materials of the article, the proposed structural diagrams, the operation scheme of the hopper feeder and the derived analytical formulas may be used by designers, researchers and technologists while improving of existent and developing of new devices.