Теорія і практика будівництва

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/2113

Browse

Search Results

Now showing 1 - 10 of 20
  • Thumbnail Image
    Item
    Аналіз впливу основних видів дефектів та пошкоджень на несучу здатність залізобетонних елементів
    (Видавництво Львівської політехніки, 2018-02-26) Лободанов, М. М.; Вегера, П. І.; Бліхарський, З. Я.; Lobodanov, M.; Vegera, P.; Blikharskyy, Z.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    За сучасними економічними тенденціями необхідно змінювати призначення будівель та споруд. Це зазвичай призводить до зміни величини та характеру впливу корисного навантаження на будівельні конструкції, з необхідністю оцінювання технічного стану та заміною або підсиленням елементів. Важливе місце в обстеженні, реконструкції будівель і споруд належить визначенню залишкової несучої здатності елементів. Особливо це стосується залізобетонних елементів, які поширені в України. Важливим аспектом визначення залишкової несучої здатності згинаних залізобетонних елементів є дослідження впливу дефектів і пошкоджень на зміну міцності та деформативності елемента. Оскільки залізобетон є складним композитним матеріалом, визначення впливу і прогнозування дії на нього різних видів дефектів і пошкоджень є складним завданням. Переважно це стосується комбінації різних дефектів і пошкоджень, яка підвищує варіативність дії різних внутрішніх і зовнішніх факторів під час розрахунку і формування методології визначення їх впливу. Досліджено вплив дефектів і пошкоджень на залишкову несучу здатність пошкоджених залізобетонних елементів з акцентуацією на згинані залізобетонні елементи. Розглянуто дію різних видів дефектів і пошкоджень та їхніх певних комбінацій, які призводять до зміни характеристик міцності та деформативності елемента, і можливої зміни роботи елемента.
  • Thumbnail Image
    Item
    Вплив товщини цементоґрунтових основ на несучу здатність бетонних дорожніх покриттів
    (Видавництво Львівської політехніки, 2018-02-26) Солодкий, С. Й.; Думич, І. Ю.; Турба, Ю. В.; Solodkyy, S.; Dumych, I.; Turba, Yu.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Постійний приріст навантажень на дорожні покриття потребує постійного збільшення їх несучої здатності. Наведені результати експериментальних випробувань моделей бетонних покриттів на піскоцементних основах. Проведені експериментальні дослідження в лабораторії кафедри автомобільних доріг і мостів Національного університету “Львівська політехніка” на змодельованій ділянці покриття в масштабі 1:3 показали, що підвищувати несучу здатність бетонних дорожніх покриттів необхідно за рахунок влаштування основ із матеріалів укріплених цементом. Отримані рівняння регресії першого порядку, що характеризують залежність основних показників несучої здатності покриттів – пружних прогинів і граничних навантажень – від товщини покриттів і жорстких основ. У результаті експериментальних моделей бетонних покриттів на жорстких основах різної товщини встановлено, що по несучій здатності односантиметрова плита покриття еквівалентна приблизно 1,8–2,0 см плити жорсткої піскоцементної основи.
  • Thumbnail Image
    Item
    Аналіз за допомогою математичного моделювання залишкової несучої здатності існуючих елементів конструкцій при підсиленні
    (Видавництво Львівської політехніки, 2018-02-26) Шиндер, В. К.; Лобзін, М. В.; Shynder, V.; Lobzin, M.; Національний університет “Львівська політехніка”, кафедра опору матеріалів та будівельної механіки; Lviv Polytechnic National University, Department of Strength of Materials and Structural Mechanics
    Під час експлуатації споруди виникають ситуації, коли необхідно змінити планувальне рішення, яке веде до втручання в несучі елементи конструкції. Підсилення будь-якого елемента конструкції охоплює не тільки визначення ступеня пошкодження елемента, але і методу його підсилення. Саме визначення ступеня пошкодження є надзвичайно складним і відповідальним завданням для інженера. В більшості випадків пошкоджений елемент вважається таким, що не може сприймати навантаження і, як наслідок, під час проектування підсилення нові елементи підсилення розраховуються без врахування несучої здатності пошкодженого елемента. Такий підхід не виправдовує себе у випадку, коли ми змушені враховувати габарити елемента після підсилення. Тому що точніше ми зможемо визначити фактичний стан пошкодженого (аварійного) елемента, то ефективніше зможемо усунути аварійну ситуацію з мінімальними змінами показників приміщення, споруди, тощо
  • Thumbnail Image
    Item
    Розрахунок за деформаційною моделлю залізобетонних колон, підсилених вуглецевою стрічкою
    (Видавництво Львівської політехніки, 2016) Бліхарський, Я. З.; Хміль, Р. Є.; Холод, П. Ф.
    Для розрахунку підсилених карбоновими стрічками позацентрово стиснутих залізобетонних колон розроблено пропозиції, які ґрунтуються на методиці розрахунку згідно з рекомендаціями НДІБК та Sika [7] на базі деформаційної моделі розрахунку згідно з нормами [34]. Для визначення додаткового ексцентриситету за рахунок вигину вводиться коефіцієнт гнучкості, який виведено з використанням залежностей Eurocode 2 [84]. Запропоновано алгоритм розрахунку для підсилених при початковому рівні навантаження колон. У розробленій методиці розрахунку на основі [34, 84] запропоновано методологію врахування включення в роботу карбонової стрічки підсилення. За несучою здатністю підсилених колон при досягненні деформацій текучості основної арматури розбіжність теоретичних результатів з експериментальними становить 5.65–7.5% у бік заниження розрахункових величин. Розбіжність розрахункової несучої здатності колон з експериментальною за критерієм досягнення граничних деформацій стиску бетону становить 8.35–9 % у бік заниження теоретичних величин порівняно з експериментальними. Розрахунок несучої здатності позацентрово стиснутих колон за цією методикою дає задовільні результати, при цьому теоретичні величини міцності є меншими від експериментальних, отже, можна рекомендувати запропоновану методику розрахунку до використання. In this paper for calculation of reinforced concrete columns strengthened with carbon laminate with suggestions based on the method of calculation according to the recommendations NIISK and Sika on the basis of deformation model calculation according to regulations . To determine the additional eccentricity introduced by bending flexibility factor, which is derived using in Eurocode 2. The algorithm for calculating strengthened at the primary level loading columns. In the developed method of calculation based on proposed a methodology to take account of the inclusion of work carbon laminate reinforcement. For Strengthening effect by main reinforcement’s yield state different of theoretical results with experimental is 5.65–7.5 % towards lowering the theoretical values. The discrepancy between the theoretical bearing capacity of columns with experimental for limit compressive strain of concrete is 8.35–9 % towards underestimation of experimental theoretical values. Calculation of load capacity noncentral compressed columns by method gives satisfactory results with theoretical values of strength is less than the expiremental, allowing you to recommend the proposed method of calculation to use.
  • Thumbnail Image
    Item
    Розрахунок несучої здатності залізобетонних надколонних плит безкапітельно-безбалкових перекриттів методом граничної рівноваги
    (Видавництво Львівської політехніки, 2015) Павліков, А. М.; Микитенко, С. М.
    Перспективним напрямком застосовування збірних конструкцій є індустріальний безкапітельно-безбалковий каркас (аналог системи “КУБ”). Сьогодні цей каркас зазнав багатьох удосконалень, а тому його можна запропонувати для вирішення завдань програми забезпечення громадян доступним житлом. До складу каркасу входять колони, елементи жорсткості та плити перекриття. Внутрішні зусилля у плитах перекриття такого каркасу розподіляються нерівномірно, тому доцільно армувати плити відповідно до методики побудови епюри матеріалів. Така методика передбачає улаштування обривів поздовжньої арматури. В основу визначення місць обривів покладено кінематичний спосіб методу граничної рівноваги. Суть його в тому, що гранична рівновага плити описується рівнянням рівності віртуальних робіт між зовнішніми і внутрішніми зусиллями на можливих відповідних переміщеннях цих зусиль. Тому за мету дослідження поставлено розроблення методики розрахунку несучої здатності збірних плит безкапітельно- безбалкової каркасної конструктивної системи на основі кінематичного способу методу граничної рівноваги з використанням методів оптимізації. Запропонований підхід дає змогу враховувати схему обпирання плит та характер прикладання до них навантаження. Плити з обривами поздовжньої арматури більше відповідають умовам розподілу внутрішніх зусиль, що дає можливість зменшити витрати арматурної сталі, економія може становити від 15 до 25 %. Thepromising field of efficient precast structures application is industrial flat plate framework (of “CUBE” system type). For today, this framework has undergone many improvements, and therefore it can be recommended for solving the tasks of the program for providing citizens with affordable housing. Columns, inflexibility elements and floor slabs are included into the framework composition. Internal forces in slabs are distributed unevenly, that is why it is reasonable to reinforce slabs according to the methodology of the materials curve construction. This methodology envisages arranging of longitudinal concrete reinforcement breakages. The kinematic variant of the maximum equilibrium method is the basis of calculation in the present study. Therefore, the aim of the present study was development of the methodology for calculation of precast floor slabs of the flat plate framework structural system’s bearing strength on the basis of kinematic variant of maximum equilibrium method using the optimization methods.The suggested approach allows taking into consideration the floor slab-wall junction scheme and the character of the load application to them.Floor slabs with the precipices of longitudinal concrete reinforcement more answer the terms of internal forces distribution, which permits to reduce the framework steel costs. Savingscanmakefrom 15 to 25 %.
  • Thumbnail Image
    Item
    Експериментальні дослідження міцності та деформативності армокам'яних згинаних елементів
    (Видавництво Львівської політехніки, 2015) Крамарчук, А. П.; Ільницький, Б. М.; Волинець, М. Е.; Бобало, Т. В.
    Наведені результати експериментальних досліджень міцності та деформативності нормальних перерізів армокам’яних балок, армованих безкаркасним армуванням стержневою арматурою класу А400С без попереднього напруження. Ці експерименти та порівняння їх з розрахунками за чинними нормами дають змогу оцінити збіжність результатів та зробити висновки щодо можливості раціонального конструювання керамоблокових згинних елементів із подвійним армуванням у зоні дії нормальних сил. Ця робота є частиною досліджень керамоблокових конструкцій з різними типами армування та різними типами розташування керамічних елементів у балці, які проводять у науково-дослідній лабораторії кафедри будівельних конструкцій і мостів Інституту будівництва та інженерії довкілля Національного університету “Львівська політехніка”. Практичне значення роботи полягає в визначенні доцільності використання цих типів балок у будівництві, характеру поводження керамоблокової конструкції із різними типами армування. Для розроблення пропозицій потрібні також інші експериментальні дані, які будуть проводитися у майбутньому. Всі дослідження експериментальних взірців балок виконали в ГНДВЛ-105 кафедри будівельних конструкцій та мостів Національного університету “Львівська політехніка” автори статті. The results are given on the basis of an experimental research on firmness and deformability of normal sections of concrete beams reinforced with frameless reinforcement and rod reinforcement class A400C without prestressing. These experiments and comparing them with calculations according to current regulations give an opportunity to assess the convergence of the results and draw conclusions about the possibility of rational design of ceramic block bending elements with double reinforcement in the area of the normal forces. This work is a part of research in the field of ceramic block constructions with different types of reinforcement and location of different types of ceramic elements in the beam, which are conducted by a research laboratory of the department “Building Constructions and Bridges” of Civil and Environmental Engineering Institute and National University “Lviv Polytechnic”. The practical significance of the work is determined by the advisability of using these types of beams in the building and the character of ceramic block behaviour with different types of reinforcement. To make further suggestions there are needed other experimental data, which will be held in the future. All researches of experimental prototypes of beams were performed in HNDVL-105 of department “Building Constructions and Bridges” National University “Lviv Polytechnic” by the authors of this article.
  • Thumbnail Image
    Item
    Несуча здатність та прогини фібропінобетонних балок, армованих канатною арматурою малого діаметра
    (Видавництво Львівської політехніки, 2015) Верба, В. Б.; Шалалдіг, Важді М. Т.
    Стаття присвячена вивченню несучої здатності та величини прогину згинаних конструкцій з безавтоклавного фібропінобетону, армованих канатною арматурою. Актуальність таких досліджень зумовлена тим, що виконання огороджувальних та несучих конструкцій з армованого фібропінобетону є економічно виправдане. Найбільші втрати тепла в будівлях спостерігаються через так звані “містки холоду”, до яких належать віконні та дверні перемички. Виконання перемичок з ніздрюватого бетону вирішує питання теплоізоляції. Проведений аналіз наявних на українському ринку технічних рішень перемичок з ніздрюватих бетонів показав, що у поєднанні з жорстким арматурним каркасом такі конструкції працюють за призначенням. Натомість відомостей про роботу пінобетонних згинаних конструкцій з канатною арматурою є недостатньо. Для виконання поставленої мети запроектовані та виготовлені дві дослідні балки із безавтоклавного фібропінобетону класу LC 2 марки за густиною D1200, розмірами 120´240´2000 мм з робочою арматурою 8Ø3 6х7+FC DIN 3055. Теоретично встановлене розрахункове погонне навантаження на запроекто- вані та випробувані балки з фібропінобетону становило 4,27 кН/м. The article is devoted to the study of carrying capacity and bending deflections of fiberreinforced non-autoclaved foam concrete structures reinforced by steel ropes. The relevance of such research caused by the fact that the implementation of protecting and supporting structures of reinforced foam concrete is economically efficient. The greatest heat loss in buildings observed through the so-called “cold bridges”, which include window and door lintels. Implementation of cellular concrete lintels solve the problem of insulation. The analysis of existing on Ukrainian market technical solutions of cellular concrete lintels showed that in combination with rigid reinforcement cages such designs are successful. Instead, information on the performance of bending foam concrete structures with steel rope and dispersed polypropylene fiber reinforcement are not enough. To accomplish the goal two research beams of non-autoclaved fiber-reinforced foam concrete of LC 2 class and D1200 density grade were designed and manufactured. The dimentions of beams were 120´240´2000 mm with a working reinforcement 8Ø3 6x7 + FC DIN 3055. The theoretically calculated linear load on tested beams reached 4.27 kN/m.
  • Thumbnail Image
    Item
    Несуча здатність комплексних конструкцій з несучими сталевими тонкостінними холодногнутими елементами
    (Видавництво Львівської політехніки, 2013) Петренко, О. В.
    Наведено результати теоретичних та експериментальних досліджень несучої здатності комплексних конструкцій з несучими сталевими тонкостінними холодно-гнутими елементами. Встановлено та проаналізовано параметри комплексних конструкцій, від яких залежить їх робота та схема руйнування. Наведено результати теоретичних та експериментальних досліджень несучої здатності комплексних конструкцій з несучими сталевими тонкостінними холодно-гнутими елементами. Встановлено та проаналізовано параметри комплексних конструкцій, від яких залежить їх робота та схема руйнування. Ключові слова: тонкостінні холодногнуті елементи, комплексні конструкції, несуча здатність, схеми руйнування. In the article the results of theoretical and experimental studies of bearing capacity of complex structures with bearing cold-formed steel thin-walled elements are presented. Determined and analyzed the parameters of complex structures that affect their work and scheme of destruction. In the article the results of theoretical and experimental studies of bearing capacity of complex structures with bearing cold-formed steel thin-walled elements are presented. Determined and analyzed the parameters of complex structures that affect their work and scheme of destruction.
  • Thumbnail Image
    Item
    До питання розрахунку пошкоджених залізобетонних колон
    (Видавництво Львівської політехніки, 2013) Клименко, Є. В.; Дуденко, Т. А.
    Викладено спосіб розрахунку залізобетонних колон, пошкоджених в процесі експлуатації. Наведено результати натурного експерименту з визначення несучої здатності Викладено спосіб розрахунку залізобетонних колон, пошкоджених в процесі експлуатації. Наведено результати натурного експерименту з визначення несучої здатності колон. In this article the way of calculation of the ferroconcrete columns damaged in use is stated. The results of this experiment on determination of carring capacity of columns are given.
  • Thumbnail Image
    Item
    Характер руйнування пошкоджених таврових балок
    (Видавництво Львівської політехніки, 2013) Клименко, Є. В.; Чернєва, О. С.; Арез, Мохаммед Ісмаел
    Досліджено характер руйнування дослідних зразків – балок з пошкодженою полицею. Дослідження проводять з метою вивчення впливу пошкоджень балки на її залишкову несучу здатність. The nature of the experimental model – beams’ destruction with damaged shelf is examined at the article. Studies conducted to study the effect of beam damage on residual bearing capacity.