Transport Technologies
Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/51077
Browse
Item Application of algorithmic models of machine learning to the freight transportation process(Видавництво Львівської політехніки, 2022-03-01) Kotenko, Viktoriia; Vinnytsia National Technical UniversityУ роботі наведено результати аналізу застосування алгоритмічних моделей машинного навчання до процесу перевезення вантажів. Аналіз існуючих досліджень дозволив виявити ряд переваг застосування обчислювального інтелекту у логістичних системах, серед яких: підвищення точності прогнозування, зменшення транспортних витрат, підвищення ефективності доставки вантажів, зниження ризиків, пошук ключових факторів ефективності. У процесі дослідження було визначено основні напрями застосування алгоритмічних моделей машинного навчання, як-от: маршрутизація транспортних засобів, вибір виду вантажу, виду транспортування та типу транспортних засобів; прогнозування витрат палива транспортними засобами, збоїв у транспортуванні, транспортних витрат, тривалості виконання замовлення; оцінка парку рухомого складу та ефективності виконання транспортного завдання. На основі досліджуваних публікацій було виявлено найбільш поширені у вантажних перевезеннях алгоритмічні моделі машинного навчання та проаналізовано їхню ефективність. Моделі лінійної та логістичної регресії є достатньо простими, проте не завжди дають високі показники моделювання; моделі глибокого навчання досить широко застосовуються до всіх виявлених напрямів; моделі дерев рішень та випадкового лісу часто показують найвищі показники ефективності моделювання; моделі k-найближчих сусідів та опорних векторів доцільно застосовувати як у задачах класифікації, наприклад, вибору виду вантажу та виду транспортування, так і для прогнозування витрат палива та тривалості транспортного процесу.