Ukrainian Journal of Mechanical Engineering and Materials Science

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/31565

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Research on the characteristics of gear-cutting processes for external and internal meshing using the power skiving method
    (Видавництво Львівської політехніки, 2023-02-28) Hrytsay, Ihor; Slipchuk, Andrii; Bembenek, Michal; Lviv Polytechnic National University; AGH University of Krakow
    The results of modelling and investigation of external and internal gear-cutting processes using the power skiving method are presented. The principles of constructing a geometric model of undistorted chip formation are described, based on parameters from which cutting forces are calculated. It is found that, under identical conditions, the cutting force is three times greater when internal gears are cut than when external gears are cut. The influence of this force on the machining error is determined by the gear pitch parameter. It is shown that the most rational way to reduce the machining error is to reduce the cutting force by reducing the axial feed rather than by increasing the number of passes.
  • Thumbnail Image
    Item
    Construction verification and modeling of acoustic measuring probe
    (Видавництво Львівської політехніки, 2022-02-22) Sheremeta, Roman; Ferens, Oleksandr; Lviv Polytechnic National University
    The paper presents a study of wave processes occurring in the experimental measuring acoustic probe. The probe is designed for contactless measurement of linear dimensions and micro-movements of physical objects using acoustic oscillations in the sound range. In the course of the study, an equivalent circuit of the probe in the form of a T-link band electric K-filter was drawn up. According to the design geometric parameters of the acoustic probe, the electrical parameters of the K-filter components are calculated. To verify the theoretical results, a set of experimental equipment was developed, and a method of experimental research was developed. Experimental studies have confirmed the possibility of designing acoustic probe using the proposed method of calculating the geometric parameters of its elements.
  • Thumbnail Image
    Item
    Modeling and simulation of machined surface layer microgeometry parameters
    (Видавництво Львівської політехніки, 2022-02-22) Stupnytskyy, Vadym; Dragašius, Egidijus; Baskutis, Saulius; Xianning, She; Lviv Polytechnic National University; Kaunas University of Technology
    The formation of the microtopography of the machined surface is one of the most critical factors in ensuring the effective operating properties of the product. These are indicators such as wear resistance, fatigue strength, provision of friction parameters of moving joints, etc. The most important reason for the formation of microroughness is vibration in the technological surface of the machine-tool-tool-tool-workpiece. This article is devoted to describing a new method of modelling the dynamic processes of machining. The peculiarity of this technique is using the results of rheological modelling (DEFORM). In addition, the consideration of regenerative vibrations of the tool is the difference of the described model. Regenerative oscillations arise due to surface roughness, which will be processed as a result of the previous technological stage of mechanical treatment. The mathematical model and the research results are described in the article. Recommendations for reducing oscillations are given.
  • Thumbnail Image
    Item
    Substantiation of structure and parameters of pneumatic system of mobile robot with orthogonal walking drive
    (Видавництво Львівської політехніки, 2019-03-20) Korendiy, Vitaliy; Zinko, Roman; Muzychka, Diana; Lviv Polytechnic National University; Dniprovsky State Technical University
    Problem statement. Mobile robots have awoken a large interest between scientists and designers in the last few years. One of the prospective drives of such robots is based on pneumatically operated system with no use of electric, heat, magnetic or other types of energy. Purpose. The main purpose of this research consists in substantiation of structure and parameters of pneumatic system of mobile robot with orthogonal walking drive. Methodology. The research is carried out using the basic laws and principles of mechanics, pneumatics and automation. The numerical experiment is conducted in MathCAD software and computer simulation of the robot’s motion is performed using SolidWorks software. Findings (results) and originality (novelty). The improved structure of the mobile robot with orthogonal walking drive is proposed. The pneumatically operated system ensuring the robot’s motion is substantiated. Practical value. The proposed design of walking robot can be used while designing industrial (production) prototypes of mobile robotic systems for performing various activities in the environments that are not suitable for using electric power. Scopes of further investigations. While carrying out further investigations, it is necessary to ensure the possibility of changing motion direction of mobile robot by means of pneumatic drive. In addition, it is expedient to design the devices for changing motion speed of the robot and the height of lifting of its feet.