Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Математичні моделі визначення температурних полів у неоднорідних елементах цифрових пристроїв із урахуванням термочутливості
    (Видавництво Львівської політехніки, 2023-02-28) Гавриш, В. І.; Шкраб, Р. Р.; Havrysh, V. I.; Shkrab, R. R.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено лінійну та нелінійну математичні моделі визначення температурного поля, а згодом і аналізу температурних режимів у ізотропних просторових середовищах із напівнаскрізними чужорідними включеннями, які піддаються внутрішнім та зовнішнім тепловим навантаженням. Для цього коефіцієнт теплопровідності для таких структур описано єдиним цілим за допомогою асиметричних одиничних функцій, що дає змогу розглядати крайові задачі теплопровідності з одним лінійним та нелінійним диференціальними рівняннями теплопровідності з розривними та сингулярними коефіцієнтами та лінійними і нелінійними крайовими умовами на межових поверхнях середовищ. У випадку нелінійної крайової задачі запроваджено лінеаризуючу функцію, із використанням якої лінеаризовано вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови і внаслідок цього отримано частково лінеаризоване диференціальне рівняння другого порядку з частковими похідними та розривними і сингулярними коефіцієнтами відносно лінеаризуючої функції з частково лінеаризованими крайовими умовами. Для остаточної лінеаризації частково лінеаризованих диференціального рівняння та крайових умов виконано апроксимацію температури за однією з просторових координат на межових поверхнях включення кусково-сталими функціями, внаслідок чого як диференціальне рівняння, так і крайові умови стають цілком лінеаризованими. Для розв’язування отриманої лінійної крайової задачі використано метод інтегрального перетворення Ганкеля, внаслідок чого отримано аналітичний розв’язок, який визначає запроваджену лінеаризуючу функцію. Як приклад, вибрано лінійну залежність коефіцієнта теплопровідності конструкційних матеріалів структури від температури, яку часто використовують у багатьох практичних задачах. Внаслідок цього отримано аналітичні співвідношення у вигляді квадратних рівнянь для визначення розподілу температури у термочутливому шарі з чужорідним напівнаскрізним включенням при зовнішньому нагріванні у вигляді теплового потоку. Виконано числовий аналіз поведінки температури як функції просторових координат для заданих значень геометричних і теплофізичних параметрів. Досліджено вплив чужорідного включення на розподіл температури, якщо матеріалом середовища вибрано кераміку ВК94-І, а включення – срібло. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообмінних процесів у середині цих конструкцій, зумовлених внутрішніми та зовнішніми тепловими навантаженнями, розроблено програмні засоби, із використанням яких виконано геометричне зображення розподілу температури, залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розроблених математичних моделей аналізу теплообмінних процесів у просторових неоднорідних середовищах із внутрішнім та зовнішнім нагріванням реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються внутрішнім та зовнішнім тепловим навантаженням щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
  • Thumbnail Image
    Item
    Математичні просторові моделі визначення температурного поля із локально зосередженим тепловим нагріванням
    (Видавництво Львівської політехніки, 2022-02-28) Гавриш, В. І.; Havrysh, V. I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено лінійні та нелінійні математичні моделі визначення температурного поля, а в подальшому і аналізу температурних режимів у ізотропних просторових неоднорідних середовищах, які піддаються внутрішнім та зовнішнім тепловим навантаженням. Для цього коефіцієнт теплопровідності для таких структур описано єдиним цілим за допомогою симетричних одиничних функцій, що дає змогу розглядати крайові задачі теплопровідності з одним лінійним та нелінійним диференціальним рівнянням теплопровідності з розривними коефіцієнтами та лінійними і нелінійними крайовими умовами на межових поверхнях середовищ. У випадку нелінійної крайової задачі застосовано перетворення Кірхгофа, за допомогою якого лінеаризовано вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови і внаслідок отримано лінійне диференціальне рівняння другого порядку з частковими похідними та сингулярними коефіцієнтами відносно функції Кірхгофа з лінійними крайовими умовами. Для розв'язування отриманої лінійної крайової задачі використано метод інтегрального перетворення Фур'є, внаслідок чого отримано аналітичний розв'язок, який визначає лінеаризуючу функцію Кірхгофа. Як приклад, вибрано лінійну та кубічну залежності коефіцієнта теплопровідності конструкційних матеріалів структури від температури, які часто використовують у багатьох практичних задачах. Внаслідок цього отримано аналітичні співвідношення у вигляді квадратних і біквадратних рівнянь для визначення розподілу температури у термочутливому шарі з чужорідним включенням при зовнішньому локальному нагріванні. Виконано числовий аналіз поведінки температури як функції просторових координат для заданих значень геометричних і теплофізичних параметрів. Досліджено вплив чужорідного включення на розподіл температури, якщо матеріалом середовища вибрано кераміку ВК94-І, а включення – срібло, алюміній та кремній. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообмінних процесів у середині цих конструкцій, зумовлених внутрішніми та зовнішніми тепловими навантаженнями, розроблено програмні засоби, із використанням яких виконано геометричне зображення розподілу температури залежно від просторових координат. Отримані числові значення температури свідчать про відповідність розроблених математичних моделей аналізу теплообмінних процесів у просторових неоднорідних середовищах з внутрішнім та зовнішнім нагріванням реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються внутрішнім та зовнішнім тепловим навантаженням, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.
  • Thumbnail Image
    Item
    Математичні моделі теплообміну в елементах турбогенераторів
    (Видавництво Львівської політехніки, 2019-09-26) Гавриш, В. І.; Король, О. С.; Шкраб, Р. Р.; Зімоха, І. О.; Havrysh, V. I.; Korol, O. S.; Shkrab, R. R.; Zimoha, I. O.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розроблено математичні моделі визначення розподілу температури в елементах турбогенераторів, які геометрично описано ізотропним півпростором та термочутливим простором з локально зосередженими джерелами нагрівання. Для цього з використанням теорії узагальнених функцій у зручній формі записано вихідні диференціальні рівняння теплопровідності з крайовими умовами. Для термочутливого простору (теплофізичні параметри залежать від температури) вихідне нелінійне рівняння теплопровідності та нелінійні крайові умови лінеаризовано з використанням перетворення Кірхгофа, відносно якого отримано лінійне диференціальне рівняння. Для розв'язування крайових задач теплопровідності використано інтегральне перетворення Ганкеля і внаслідок отримано аналітичні розв'язки в зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Ганкеля, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. Для конструкційного матеріалу термочутливого простору використано лінійну залежність коефіцієнта теплопровідності від температури. У результаті отримано зручну формулу для визначення температурного поля, яка дає змогу аналізувати температурні режими в термочутливому середовищі. Для визначення числових значень температури в наведених конструкціях, а також аналізу теплообміну в елементах турбогенераторів, зумовленого різними температурними режимами завдяки нагріванню локально зосередженими джерелами тепла, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, які відображають поведінку поверхонь, побудованих із використанням числових значень розподілу безрозмірної температури залежно від просторових безрозмірних координат. Отримані числові значення температури свідчать про відповідність наведених математичних моделей визначення розподілу температури реальному фізичному процесу. Програмні засоби також дають змогу аналізувати середовища із локально зосередженим нагріванням щодо їх термостійкості. Як наслідок, стає можливим її підвищити, визначити допустимі температури нормальної роботи турбогенераторів, захистити їх від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й всієї конструкції.