Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    Item
    Determination of horizontal deformation of the Earth's crust on the territory of Ukraine based on GNSS measurements
    (Видавництво Львівської політехніки, 2023-02-28) Доскіч, Софія; Савчук, Степан; Джуман, Богдан; Doskich, S.; Savchuk, S.; Dzhuman, B.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Метою досліджень є виявлення горизонтальних деформацій земної поверхні території України, використавши тільки перевірені і придатні для геодинамічної інтерпретації ГНСС станції. Вхідними даними є спостереження з 30 ГНСС станцій за період 2017 до 2020 р. Методика. Методика включає аналіз сучасних деформацій земної кори території України. У результаті вперше проаналізовано вплив часових серії координат, створених двома різними методами: точного позиціонування PPP і класичним диференційним методом, на визначення деформаційних процесів. Встановлено, що на сьогоднішній день для задач моніторингу, в тому числі і геодинамічного, варто використовувати метод точного позиціонування PPP, точність визначення швидкостей ГНСС станцій якого в результаті перевірки виявилась вищою ніж в класичному диференційному методі. Результати. Побудовано карту горизонтальних деформацій земної кори на території України за даними часових рядів координат ГНСС станцій. Визначено ділянки розтягу земної кори в районах Шепетівка- Старокостянтинів Хмельницької області, Бориспіль – Прилуки- Переяслав-Хмельницький Київської і Чернігівської області, а також ділянку стиску земної кори в Ніжин – Степові Хутори – Козелець Чернігівської області. Додатково побудовано карту горизонтальних зміщень ГНСС-станцій, де спостерігаємо різнононаправленість цих зміщень, що швидше всього спричинено наявністю сучасних субвертикальних і субгоризонтальних розломів та розломних зон. Для кращої інтерпретації отриманих результатів необхідно залучити геолого-геофізичні дані тектонічної активності території України.
  • Thumbnail Image
    Item
    Аналіз сучасних моделей відлікових поверхонь для визначення висот методом GNSS-нівелювання
    (Видавництво Львівської політехніки, 2022-06-14) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У роботі розглянуто різні джерела інформації, що стосуються проблематики визначення висот методом GNSS-нівелювання. Реалізація цього методу потребує наявності висот геоїда або квазігеоїда, які сьогодні можна отримати із відповідних моделей. В останні десятиліття науковці з різних країн світу розробили чимало глобальних, регіональних та локальних моделей геоїда та квазігеоїда. Це сприяло появі великої кількості наукових досліджень, які стосуються тематики GNSS-нівелювання. Мета роботи – виконати аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій за критеріями, що істотно впливають на ведення досліджень у галузі визначення висот методом GNSS-нівелювання. Методика. Розглянуто 44 роботи, опубліковані у 2001–2021 рр. Серед досліджень у цьому напрямі можна виділити три види робіт: 1) 13 публікацій щодо методів побудови самих моделей; 2) 12 – щодо перевірки їх точності та 3) 19 робіт щодо “коригування” модельних висот. На першому етапі дослідження аналіз здійснено за критеріями, що характеризують моделювання поверхні геоїда та квазігеоїда, серед яких питання теорії Стокса і Молоденського, математичні способи аналізу й опрацювання даних, систем припливів, ондуляції геоїда нульового порядку та масштабних рівнів моделей. На другому етапі проаналізовано частоту публікувань за роками та встановлено активність подання наявних моделей геоїда та квазігеоїда з вибірки країн, здійсненої на підставі всіх робіт, вибраних у цьому дослідженні. На третьому етапі виконано кількісний аналіз офіційно опублікованих моделей геоїда та квазігеоїда щодо частоти публікувань за досліджуваний період. Встановлено відношення точності висот глобальних моделей геоїда щодо ступеня/порядку їх обчислення. Результати. Автори 58 % проаналізованих публікацій використовують у своїх дослідженнях теорію Стокса, а у 42 % – теорію Молоденського. Серед математичних способів аналізу та опрацювання даних у 27 % робіт застосовано метод середньої квадратичної колокації, по 20 % – метод найменших квадратів, метод “видалення – відновлення” та метод модифікації формули Стокса найменшими квадратами (або KTH-method), метод швидкого перетворення Фур’є – у 13 %. У публікаціях щодо створення глобальних моделей Землі здебільшого в розрахунках використовують параметри припливної системи “tide free” – загалом 40 %. Не менш важливим критерієм (33 % робіт) можна вважати врахування параметра ондуляції геоїда нульового порядку (“zero degree term”). Загалом 41 % досліджень спрямовано на створення та аналіз моделей квазігеоїда саме регіонального масштабу. За досліджуваний проміжок часу найбільше робіт опубліковано у 2012 та у 2018 рр. Передовими країнами щодо розроблення моделей квазігеоїда є Канада, Польща, Швеція та США, а глобальних моделей геоїда – Німеччина, США та Китай. За 2001–2021 рр. офіційно представлено 99 глобальних моделей геоїда різних ступенів/порядків, серед яких для досліджень найчастіше використовують моделі серій GOCO, EIGEN та EGM. Також за цей проміжок часу запропоновано 177 моделей квазігеоїда, найбільше з яких опубліковано у 2019 р. На основі цих даних простежується зв’язок із частотою публікувань у 2008–2021 рр. Для точності глобальних моделей геоїда щодо ступеня/порядку їхнього обчислення характерні систематичні зміни в межах 0,52–1,92 м, 0,38–0,50 м, 0,23–0,38 м та 0,12–0,14 м для моделей 60-220, 220-260, 260-720 та 720-2190 ступеня/порядку відповідно. Наукова новизна. Аналіз сучасних моделей відлікових поверхонь на основі матеріалів наукових публікацій у сфері використання методу GNSS-нівелювання дає можливість встановити переваги та недоліки досліджень у цій галузі. Практична значущість. Дані такого аналізу можна використати для вирішення ключових проблем щодо визначення висот методом GNSS-нівелювання, які потребують додаткових досліджень, здійснивши пошук модернізованих рішень.
  • Thumbnail Image
    Item
    Застосування методики визначення координат за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій
    (Видавництво Львівської політехніки, 2022-02-22) Савчук, С.; Проданець, І.; Федорчук, А.; Savchuk, S.; Prodanets, I.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Закарпатська регіональна філія ДП “УКРДАГП”; Lviv Polytechnic National University; Transcarpathian regional branch of SE “UKRDAGP”
    Одне із основних завдань геодезії – визначення координат з високою точністю за допомогою GNSSспостережень. Для виконання таких завдань зазвичай застосовують відносний метод визначення координат у статичному режимі. Статичний режим спостережень здебільшого використовують для побудови геодезичних мереж, оскільки він найточніший. Методика відносного методу основана на визначенні координат невідомого пункту щодо відомого. Координати базового пункту повинні бути відомі, найчастіше точно задані на підставі державних геодезичних мереж. У цьому дослідженні базовими пунктами прийнято активні референцні станції, координати яких задано із тижневого комбінованого розв’язку GNSS-мережі. Мета роботи – дослідити точність застосування методики визначення координат за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій. Методика. У роботі використано дані GNSS-спостережень, виконаних на пунктах тріангуляції Державної геодезичної мережі, та дані референцних станцій. На їхній основі створено умовні GNSS-мережі, які складаються із трьох референцних станцій та одного пункту тріангуляції. Процес опрацювання даних у програмному пакеті передбачав, що контрольним пунктом слугували найближчі референцні станції, уточнені координати яких фіксували як контрольні та задані в системі ETRF2000. Отримані набори координат однойменних пунктів та станцій були трансформовані в систему УСК2000. Точність визначених у такий спосіб координат проаналізовано на основі різниць координат та їх стандартних відхилень. Різниці для референцних станцій визначали відносно уточнених тижневих координат, а для пунктів тріангуляції щодо середнього значення. Результати. Отримані різниці на пунктах державної мережі містяться у межах 1–2 см, набуваючи як додатних, так і від’ємних значень. Виняток – лише п’ята сесія спостережень, де різниці становлять 2–4 см із додатним знаком. На референцній станції KOVL різниці координат змінюються від –1,2 см до +1,8 см, а на станції MEL2 від 0 см до 5,4 см. Зміни координат на пунктах тріангуляції оцінено стандартним відхиленням на рівні 2,1 см, 1,1 см та 1,9 см для XYZ, відповідно. Точність усіх інших координат референцних станцій становить 0,3–1,6 см, із середнім коливанням від –2,7 см до +1 см. Наукова новизна та практична значущість. У роботі показано методику визначення координат у системі УСК2000 за даними GNSS-спостережень із прив’язкою до мережі активних референцних станцій. Запропонована методика дає змогу використовувати супутникові методи для визначення координат у державній системі УСК2000 із забезпеченням точності на рівні 1–2 см, а також істотно спростити і пришвидшити процес польових робіт
  • Thumbnail Image
    Item
    Аналіз похибок еліпсоїдних висот на основі результатів GNSS-нівелювання
    (Видавництво Львівської політехніки, 2021-02-16) Федорчук, А.; Fedorchuk, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Дослідження впливу похибок на результати вимірювань завжди є актуальним завданням. Аналіз таких величин дає можливість оцінити характер зміни та величину впливу похибок для подальшого врахування або компенсування, або зведення до мінімуму. В цій роботі розглянуто похибки визначення еліпсоїдних висот із GNSSспостережень. У визначенні еліпсоїдної висоти цим методом можна досягти точності 1–2 см у статичному режимі (Static) та 2–4 см у режимі реального часу (RTK). Отже, точність вибраного режиму спостережень вказуватиме на початкові межі впливу похибок еліпсоїдних висот, а чинники, що виникають безпосередньо під час спостережень та під час опрацювання даних, визначатимуть, в яких межах змінюватимуться ці похибки щодо початкових меж. Мета цієї роботи полягає у проведенні аналізу похибок еліпсоїдних висот на основі результатів GNSSнівелювання, отриманих у режимах статики та RTK. Методика. Для дослідження використано дані GNSSнівелювання на 17 пунктах (стінні та ґрунтові репери) ходів нівелювання І–ІІ класів, які розташовані в радіусі 15 км від перманентної станції SULP Національного університету “Львівська політехніка”. Спостереження виконано в режимі статики (4-годинні) та RTK (8–10 вимірювань). Пункти поділено на три категорії (5–6 пунктів): 1) статика на стінних реперах; 2) режим реального часу на стінних реперах; 3) статичний режим на ґрунтових реперах. Комбінуванням режимів спостережень та заданих категорій утворено чотири GNSS-мережі, що містять 11, 11, 12 та 17 пунктів. Результати. Для кожної категорії визначено у процентах, у яких межах змінюються похибки еліпсоїдних висот у статичному режимі спостережень та режимі реального часу, із застосуванням методу GNSS-нівелювання. На основі отриманої інформації встановлено, що для першого випадку похибки еліпсоїдних висот у середньому змінюються у межах ±43 %, для другого – ±36 %, а для третього – ±14 %. Аналіз статистичних характеристик для кожної категорії свідчить про те, що стандартне відхилення даних статичного режиму становить 2 % та 19 %, а режиму RTK – 12 % відповідно. Наукова новизна та практична значущість. Характер зміни меж похибок визначення еліпсоїдних висот дає уявлення про те, якої точності слід очікувати, виконуючи GNSS нівелювання залежно від режиму спостережень. Такі дані відіграють важливу роль у вирішенні науково-прикладних завдань методом GNSS-нівелювання, таких як побудова нових нівелірних мереж або моніторинг пунктів висот вже наявних мереж.
  • Thumbnail Image
    Item
    Іноваційні цифрові технології в геодезії і геоінформатиці на першому online INTERGEO 2020
    (Видавництво Львівської політехніки, 2021-02-16) Горб, А.; Тревого, І.; Gorb, A.; Trevoho, I.; Національний університет “Львівська політехніка”; CHC Navigation; Lviv Polytechnic National University
    Проаналізовано основні новинки виставки INTERGEO 2020 в Берліні в галузі геодезичного приладобудування, наведено характеристики нових систем та фахові коментарі.
  • Thumbnail Image
    Item
    Застосування процедури симуляції даних для задач GNSS-томографії тропосфери
    (Видавництво Львівської політехніки, 2021-02-16) Савчук, С.; Хоптар, А.; Savchuk, S.; Khoptar, A.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Вміст та розподіл водяної пари в атмосфері Землі пов’язані з різними погодними умовами і кліматичними процесами, а тому мають важливе значення для розуміння багатьох метеорологічних явищ. На сучасному етапі розвитку та становлення Глобальних навігаційних супутникових систем (англ. Global Navigation Satellite Systems, GNSS) розподіл вмісту водяної пари можна встановити за допомогою даних спостережень методом GNSSтомографії, що, своєю чергою, дає можливість вивчати зміни вертикального профілю вмісту водяної пари в тропосфері Землі. У GNSS-томографії тропосфери точну інформацію про розподіл водяної пари отримують за допомогою інтегральних вимірювань, таких як визначення вмісту водяної пари у похиленому напрямку (англ. Slant Water Vapor, SWV). Суть задачі GNSS-томографії тропосфери – розв’язання системи рівнянь, кількість яких обмежується кількістю супутників, що беруть участь у спостереженнях. Функціональний зв’язок між спостереженнями та невідомими, тобто шляхи проходження GNSS-сигналів через тропосферу, повинен бути достатньо відомий. Проте сьогодні така інформація відсутня, що призводить до основної проблеми методу GNSS-томографії тропосфери – подолання дефіциту рангу під час інверсії вихідного рівняння. Цюпроблему можна вирішити, збільшивши кількість супутникових сигналів у широкому діапазоні положень. Метою цієї роботи є максимізація використання GNSS-сигналів під час моделювання томографічного розв’язку на основі симуляції даних. Методика. На підставі розробленої нами методики опрацювання даних мульти-GNSS спостережень PPP-методом запропоновано алгоритм процедури симуляції додаткових супутників під час томографічного моделювання з метою подолання проблем дефіциту рангу. Результати. Наведено результати застосування процедури симуляції даних для вертикального профілю вмісту водяної пари в тропосфері Землі на основі результатів опрацювання даних мультиGNSS спостережень на станції GANP (Попрад, Словаччина) у період з 31.05.2019 р. до 1.06.2019 р. Наукова новизна та практична значущість. Вперше запропоновано алгоритм процедури симуляції додаткових супутників з метою подолання проблем дефіциту рангу під час томографічного моделювання.
  • Thumbnail Image
    Item
    On the accuracy of gravimetric provision of astronomo-geometric leveling on geodynamic and technogenic polygons
    (Видавництво Львівської політехніки,, 2022-02-22) Бурак, Костянтин; Burak, Kostyantyn; Івано-Франківський національний технічний університет нафти і газу; Ivano-Frankivsk National Technical University of Oil and Gas
    Мета цієї роботи – теоретично обгрунтувати вимоги до точності гравіметричного забезпечення астрономічного і астрономо-геометричного нівелювання на геодинамічних і техногенних полігонах, з врахуванням точності сучасного високоточного геометричного нівелювання. Методику досягнення мети забезпечено теоретичними дослідженнями існуючих способів астрономо-геометричного нівелювання, сучасних методів прогнозу неотектонічних процесів, точності ГНСС та геометричного нівелювання. Основні результати – встановлено вимоги до точності гравіметричного забезпечення високоточного астрономо-геометричного нівелювання висотної мережі геодинамічних та техногенних полігонів. Встановлена теоретична можливість визначення ортометричних і нормально-ортометричних висот практично на 90 % території України з точністю порядку навіть 0,2 мм на 1км подвійного ходу. Наукова новизна і практична значущість: доведено, що навіть при максимальних значеннях аномалій гравіметричного поля Землі можна вважати ортометричні і нормальні висоти відрізками нормалі до референц-еліпсоїда, як і геометричні висоти; якщо при астрономічному нівелюванні визначати відхилення виска з точністю ср = 0,2" (точність сучасних зеніт- систем навіть 0,08"), то це внесе похибку в визначення різниці геоїдальних частин геодезичних висот 0,2 мм на 1 км ходу, якщо ж визначати це значення з наявних гравіметричних карт відхилення виска, то ця похибка складе 0,5–1 мм на 1 км ходу, що також відповідає нівелюванню навіть І-го класу; непаралельність еквіпотенціальних поверхонь при обчисленні висот слід враховувати вже тоді, коли різниця сили тяжіння на еквіпотенціальній поверхні початкової точки ходу і в точці перетину цієї поверхні з нормаллю в кінцевій точці ходу перевищує 2 мГал; силу тяжіння на станції нівелювання і на силовій лінії поля в кінці ходу, на висоті, що відповідає висоті відповідної станції нівелювання, треба знати при сумі перевищень в ході до 10 м на 1 км ходу з точністювсього 20 мГал, відповідно, при сумі перевищень 100 м на 1 км – 2 мГал, тому навіть модель EIGEN-CG03C (точність оцінюються в межах 8 мГал) на більшій частині рівнинної території України може забезпечити гравіметричними даними високоточне нівелювання при проведенні інженерно-геодезичних робіт та робіт на геодинамічних і техногенних полігонах.
  • Thumbnail Image
    Item
    Establishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP
    (Видавництво Львівської політехніки,, 2022-02-22) Третяк, Корнилій; Заяць, Олександр; Глотов, Володимир; Наводич, Михайло; Брусак, Іван; Tretyak, Kornyliy; Zayats, Olexandr; Hlotov, Volodymyr; Navodych, Mykhailo; Brusak, Ivan; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У статті показані аспекти історичного розвитку моніторингу Теребле-Ріцької ГЕС, які спричинили необхідність переходу до автоматизованої системи геодезичного моніторингу (АСГМ) деформацій напірного трубопроводу та інших споруд ГЕС. З 2018 року систему автоматизували та розширили її інструментальну частину. Так, станом на 2022 рік інструментальна частина АСГМ включає в себе три основні компоненти, а саме: лінійно-кутові виміри з визначенням метеорологічних параметрів, супутникові ГНСС-вимірювання, п’єзометричні вимірювання. У цій статті з метою моніторингу деформацій показані результати роботи АСГМ. Також наведені переваги застосування АСГМ у порівнянніз класичними вимірюваннями, які перш за все дають можливість постійного визначення координат в режимі реального часу з підвищенням точності виявлення просторових деформацій до рівня 2 мм (по горизонталі) і 3 мм (по висоті) на площі 2 км2. Також передбачена можливість інформувати служби технічного обслуговування об'єкта моніторингу, коли отримана деформація перевищує встановлені пороги. За результатами часових серій лінійно-кутових вимірювань можна стверджувати, що напірний трубопровід зазнає сезонних зміщень, які проявляються у горизонтальному зміщенні опор в сторону будівлі ГЕС з зимового до літнього періоду, і навпаки, зміщуються в сторону водосховища з літнього періоду до зимового. На сьогодні для сукупного аналізу лінійно-кутових вимірів з визначенням метеорологічних параметрів, ГНСС-вимірювань та п’єзометричних вимірювань даних недостатньо. З накопиченням масиву даних важливим буде встановити взаємозв’язки між цими параметрами.
  • Thumbnail Image
    Item
    Deformations of the land crust of the Carpathian region according to the data of GNSS observation
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Доскіч, Софія; Doskich, Sofiia; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Поява супутникових геодезичних спостережень ознаменувалася їх широким використанням для визначення швидкостей і спрямованості горизонтальних рухів літосферних плит (сучасної кінематики літосферних плит), що дозволило вивчати деформаційні процеси на глобальному і регіональному рівні. Сьогодні постійно діючими GNSS станціями покрита значна частина території суші. Оскільки багато з цих станцій накопичили великий обсяг щоденних вимірювань періодом до 20 років, з’являється можливість відстежити деформаційні процеси певних територій. Звісно ж, залишається проблема правильної ідентифікації результатів спостережень за істинними параметрами деформаційного процесу. Це питання потребує спільної роботи геофізиків та геодезистів. Але високоточні часові ряди координат і значення швидкостей зміщень GNSS станцій є важливими і перспективними даними для інтерпретації геодинамічних процесів, отримання яких є набагато простіше, ніж геофізичні чи геологічні дані, не потребує спеціальних затрат і активно розвивається, тобто кількість таких станцій стрімко збільшується. Сьогодні за неофіційними даними на території України працює вже більше 300 референцних станцій. Мета – виявити деформації земної кори на території Карпатської складчастої системи за допомогою GNSS технології. Вхідними даними для дослідження слугували результати спостережень тривалістю вісім років (2013–2020 pр.) на референцних станціях України (мережа ZAKPOS). З цих спостережень за допомогою наукового програмного забезпечення GAMIT/GLOBK обчислено об’єднаний в часі розв’язок (часові ряди координат та швидкості змін координат). За отриманими даними побудовано вектори горизонтальних зміщень GNSS станцій, та обчислено деформації земної кори методом трикутників, вершинами яких є GNSS станції, за допомогою програмного забезпечення “GPS Triangle Strain Calculator”. Обчислені значення деформацій показали різну геодинамічну картину в залежності від розташування трикутників. Зокрема, виділено активні зони розтягу (Рахів–Верховина та Сянок–Устрики–Долішні) та стиснення (Рахів–Хуст–Мукачево). Результати проведених дослідження дають можливість встановити особливості просторового розподілу руху земної кори в Карпатському регіоні та в майбутньому при спільній інтерпретації з геофізичними даними створити регіональну геодинамічну модель Карпатської складчастої системи.
  • Thumbnail Image
    Item
    On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons
    (Видавництво Національного університету “Львівська політехніка”, 2021-03-12) Бурак, Костянтин; Ярош, Костянтин; Burak, Kostyantyn O.; Yarosh, Kostiantyn; Івано-Франківський національний технічний університет нафти і газу; Одеський національний політехнічний університет; Ivano-Frankivsk National Technical University of Oil and Gas; Odessa National Polytechnic University
    Мета цієї роботи – теоретично обґрунтувати необхідність продовження робіт в Україні зі створення зенітних систем та астрономо-геометричного нівелювання з використанням Глобальних навігаційних супутникових систем (ГНСС) та приладів, які забезпечують точність вимірів відхилень виска 0,1– 0,2", для вивчення неотектонічних процесів як на геодинамічних полігонах, так і техногенних, які створюють для побудови геодезичної основи для будівництва та експлуатації надзвичайно важливих об’єктів. Методику досягнення мети забезпечено теоретичними дослідженнями існуючих способів астрономо-геометричного нівелювання, сучасних методів прогнозу неотектонічних процесів, точності ГНСС та геометричного нівелювання. Основні результати – встановлено теоретичну можливість використання повторного астрономо-геометричного нівелювання для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, контролю результатів геометричного і ГНСС нівелювання. Наукова новизна: теоретично обґрунтовано можливість використання повторного астрономогеометричного нівелювання спеціально створених профілів на геодинамічних полігонах для оцінки змін радіусів кривизни еквіпотенціальних поверхонь, з якими сучасні наукові гіпотези пов’язують можливість прогнозу землетрусів, контролю ГНСС і геометричного нівелювання з використанням геоїдальної складової на цих профілях, ідея синхронних спостережень з використанням зеніт систем при астрономо-геометричному нівелюванні.