Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    Item
    Coke Quenching Plenum Equipment Corrosion and Its Dependents on the Quality of the Biochemically Treated Water of the Coke-Chemical Production
    (Видавництво Львівської політехніки, 2022-03-16) Bannikov, Leonid; Miroshnichenko, Denis; Pylypenko, Oleksii; Pyshyev, Serhiy; Fedevych, Oleh; Meshchanin, Valeriy; Ukrainian State Research Institute for Carbochemistry; National Technical University “Kharkiv Polytechnic Institute”; O. M. Beketov National University of Urban Economy in Kharkiv; Lviv Polytechnic National University
    Досліджені процеси корозії сталей у біохімічно очищених водах установок гасіння коксу. Проведено гравіметричні дослідження зразків сталей за 373 і 773 K, що дало змогу встановити, що при нагріванні сталей Ст.3 і 12Х1МФ з подальшим охолодженням у воді спостерігається різний характер їх корозійного руйнування. Описано типи корозії, які виникають при контакті вуглецевих і легованих сталей з біохімічно очищеними водами коксохімічних підприємств, що були оброблені гідроксидом натрію. Показано, що результатом корозійного руйнування сталей у всіх досліджених середовищах є утворення плівок гідратованих оксидів заліза з різним характером адгезії до поверхні зразків. Доведено, що обробка води приводить до деякого зниження величин масового і глибинного показників корозії для Ст.3 і 12Х1МФ, однак не дає істотного ефекту при постійному контакті сталі з гарячою водою.
  • Thumbnail Image
    Item
    Гравіметричні роботи на території Дністровської ГАЕС
    (Видавництво Львівської політехніки, 2019-02-28) Паляниця, Б.; Джуман, Б.; Сідоров, І.; Palanytsa, B.; Dzhuman, B.; Sidorov, I.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    The purpose of this work is to perform gravimetric measurements at the points of the existing reference geodetic network on the territory of the Dniester hydro-accumulating power station (DHAPS) to study the magnitude of the correction in the leveling for the non-parallelism of the level surfaces. Method. For performance of gravimetric works on the territory of the DHAPS we used three high-precision gravimeters GNU-KV. Before starting the measurements we conducted a number of studies of these gravimeters: adjusting the optical system, adjusting the device to a minimum of tilt sensitivity, detecting and controlling the sensitivity, determining the timing of the reference, determining the temperature characteristics, benchmarking, calculating the range of measurements and its adjustment, determining the displacement of the zero point and its inclusion. One of the most important studies is the standardization (definition of a constant) of gravimeter. Standardization of gravimeters GNU-KV was carried out at the points of the Kiev narrow-band gravimetric polygon. The distance between them is about 10 km. Between these points, with sufficient accuracy, the value of acceleration in free air 5g is known For correction of leveling 7 gravimetric works were performed that covered 10 points of the well-known geodesic network at the DHAPS. At the reference point, the value of acceleration of free fall g was calculated using the global model of the gravitational field of the Earth EGM2008 to 2190 degree/order. Results. Based on the measured data, the difference between free fall acceleration for each work is calculated respectively. After working out gravimetric data it was established that the correction in leveling for the nonparallel level surfaces varies from 0.089 mm to 1.517 mm. For some lines of the network, the correction for the nonparallelism of level surfaces exceeds the permissible systematic error of leveling the first class twice. Accordingly, when working out the leveling of the first class on such lines it is necessary to take into account this correction. Failure to take into account this correction will result in an increase in the systematic error of leveling in proportion to the length of the leveling process, which will result in false results about the height and displacement of the geodetic points. The scientific novelty and practical significance. For the first time in the territory of the Dniester HAPS gravimetric surveying was carried out to calculate corrections in precision leveling for the non-parallelism of level surfaces. The necessity to carry out such removal on the territory of the DHAPS is grounded in order to reduce the systematic error of leveling.
  • Thumbnail Image
    Item
    Methods for determination of oil and grease contents in wastewater from the petroleum industry
    (Publishing House of Lviv Polytechnic National University, 2016) Cirne, Ilma; Boaventura, Jaime; Guedes, Yuri; Lucas, Elizabete
    Infrared spectrometry and spectrofluorimetry methods were correlated in the measurement of oil concentration in produced water. Furthermore, we compared colorimetry and gravimetry techniques. Adsorption experiments were performed in synthetic oily wastewaters by polymer compounds based on poly(hydroxyethyl acrylamide and polypropylene. The residual oil content was used in the techniques correlation. За допомогою інфрачервоної спектрометрії і спектрофлуориметрії визначено концентрацію нафти в промислових водах. Проведено порівняння колориметричних і гравіметричних методів. Досліджено адсорбцію шкідливих компонентів із синтетичних нафтозабруднених стічних вод полімерними сполуками на основі полі(гідроксиетил)акриламіду і поліпропілену. Для кореляції методу використано показник залишкового вмісту нафти.
  • Thumbnail Image
    Item
    Regional quasigeoid solutions for the Ukraine area
    (Видавництво Львівської політехніки, 2015) Marchenko, A. N.; Kucher, O. V.; Marchenko, D. A.
    The UQG2012 regional quasigeoid solution of an accuracy better than 4 cm with respect to the GPS-levelling data of the 1st and 2nd order was constructed by means of the least squares collocation method. In the first iteration the gravimetry-only quasigeoid UQG2011 was developed from the gravity anomalies for the subsequent detection of gross errors in GPS-leveling data. All terrain reductions were based on the 3x3 digital terrain model SRTM3. Scientific significance. Thus, the final UQG2012 solution consists of gravity anomalies and quasigeoid heights at the points of a 23 grid evaluated by means of the collocation method applied to the set of 4070 GPS-leveling quasigeoid heights plus the above mentioned gravimetry data. After first iteration, the comparison of the UQG2012 solution with all іdependent GPS-leveling data (1st – 4th order networks given in the Baltic height system) shows a good agreement with rms < 4 cm. This noise level corresponds to an estimated accuracy of the quasigeoid UQG2012 for the Ukraine and Moldova area higher than 4–5 cm with respect to GPS-leveling points of different orders. The evaluation of the UQG2012 solution with independent GPS-leveling data of the 1st and 2nd orders gives a significantly better agreement with rms of about 1.5 cm. Finally, the comparison with the European quasigeoid EGG08 leads to differences of about 20-50 cm (with rms level about 10 cm) in certain areas and to the total mean shift of 25 cm caused by the different height systems used. Розв’язок UQG2012 регіонального квазігеоїда з точністю більше ніж 2 см щодо даних GPS-нівелювання 1-го і 2-го порядку побудовано за допомогою методу середньої квадратичної колокації. У першій ітерації гравіметричний квазігеоїд UQG2011 обчислено за даними аномалій Фая для подальшого виявлення грубих помилок у даних GPS-нівелювання. Редукція за рельєф обчислена на основі 33 цифрової моделі місцевості SRTM3. Наукова новизна та практична цінність. Так, остаточне рішення складається з UQG2012 аномалій сили тяжіння і квазігеоїда висот у вузлах 23 рівномірної сітки, оцінених за допомогою методу колокації, застосованого до набору 4070 GPS-визначених висот квазігеоїда, плюс зазначених вище гравіметричних даних. Порівняння квазігеоїда UQG2012 з усіма незалежними даними GPS-нівелювання (заданих у системі Балтійської 1977 висот) показує відповідність RMS < 4 см. Цей рівень шуму відповідає розрахунковій точності квазігеоїда UQG2012 для України та Молдови, ніж 4–5 см щодо GPS-нівелювання точок різних класів. Оцінка рішення UQG2012 з незалежними даними GPS-нівелювання 1 і 2 класів дає значно кращу згоду з середньоквадратичним відхиленням близько 1,5 см. Нарешті, порівняння з Європейським вазігеоїдом EGG08 призводить до відмінностей близько 20–50 см у деяких районах і загалом до середнього зсуву 25 см, викликаних різними системами висот, що використовуються. Решение UQG2012 регионального квазигеоида c точностью лучше, чем 2 см по отношению к данным GPS-нивелирования 1-го и 2-го порядка было построено с помощью метода средней квадратичной коллокации. В первой итерации гравиметрический квазигеоид UQG2011 был вычислен по данным аномалий Фая для дальнейшего выявления грубых ошибок в данных GPS-нивелирования. Редукция за рельеф основана на 33цифровой модели местности SRTM3. Научная новизна и практическая ценность. Таким образом, окончательное решение состоит из UQG2012 аномалий силы тяжести и квазигеоида высот в узлах 23 равномерной сетки, оцененных с помощью метода коллокации, примененного к набору 4070 пунктов GPS-нивелирования высоты квазигеоида, плюс указанных выше гравиметрических данных. Сравнение квазигеоида UQG2012 со всеми независимыми данными GPS-нивелирования (заданных в системе Балтийской +1977 высот) показывает хорошее согласие с RMS < 4 см. Этот уровень шума соответствует расчетной точности квазигеоида UQG2012 для Украины и Молдовы, чем 4–5 см по отношению к GPS-нивелированию точек разных классов. Оценка решения UQG2012 с независимыми данными GPS-нивелирования 1 и 2 классов дает значительно лучшее согласие с среднеквадратичным отклонением около 1,5 см. Наконец, сравнение с Европейским квазигеоидом EGG08 приводит к различиям около 20–50 см в некоторых районах и в общем к среднему сдвигу 25 см, вызванных различными системами используемых высот.
  • Thumbnail Image
    Item
    Про аналітичну апроксимацію густини за даними градієнта сили тяжіння
    (Видавництво Львівської політехніки, 2013) Дубовенко, Ю. І.
    Математичні постановки конкретних геофізичних задач зводяться у підсумку до визначення значень коефіцієнтів рівнянь математичної фізики, які входять у ці постановки. В руслі цього факту розв’язання задачі Алексідзе у вигляді нелінійного інтегрального рівняння зведено до лінійної комбінації шуканих розв’язків. Ця альтернативна задача зведена до класичної задачі варіаційного числення. Математические постановки конкретных геофизических задач сводятся в итоге к определению значений коэффициентов уравнений математической физики, входящих в эти постановки. В русле этого факта решение задачи Алексидзе в виде нелинейного интегрального уравнения сведено к линейной комбинации искомых решений. Эта альтернативная задача сведена к классической задаче вариационного исчисления. Mathematical formulations of specific geophysical problems are usually reduced to determination of coefficients in the equations of mathematical physics, comprising a formulation. In the groove of the fact, the solution of the Alexidze problem in the form of non-linear integral equation has been reduced to linear combination of desired solutions. Then, the resulting problem was reduced to a classical problem of variational calculation.
  • Thumbnail Image
    Item
    Об особенностях распределения гипоцентров землетрясений относительно плотностной границы расслоения в земной коре (на примере отдельных участков северо-востока России)
    (Видавництво Львівської політехніки, 2013) Гайдай, Н. К.
    3D модели земной коры, построенные гравиметрическими методами для отдельных участков Северо-Востока России, позволили на количественной основе проследить закономерности в распределении гипоцентров землетрясений относительно плотностной границы расслоения. Установленные закономерности имеют аналогичный характер для территорий с различной сейсмической активностью: гипоцентры тяготеют к зонам резкого изменения рельефа плотностной границы расслоения, располагаясь преимущественно выше данной границы. Землетрясения, зафиксированные глубже данной границы, имеют энергетический класс К  9. 3D моделі земної кори, побудовані гравіметричними методами для окремих ділянок Північного Сходу Росії дали змогу на кількісній основі простежити закономірності в розподілі гіпоцентрів землетрусів відносно густинної межі розшарування. Встановлені закономірності мають аналогічний характер для територій з різною сейсмічною активністю: гіпоцентри тяжіють до зон різкої зміни рельєфу густинної межі розшарування, розташовуючись переважно вище цієї межі. Землетруси, зафіксовані глибше цієї межі, мають енергетичний клас K  9. 3D models of the Earth's crust in some areas of the North-East of Russia built using gravimetric methods have enabled to analyze, on a quantitative basis, a pattern of earthquake distribution relative to the density boundary in stratification of crust. It was found out that distribution of hypocenters was similar in areas with different seismic activity: the hypocenters tend to concentrate in the areas with sharp changes in density boundary relief, mostly above the boundary. Earthquakes, registered below the boundary, have energy classes K  9.
  • Thumbnail Image
    Item
    Нові перспективні райони, відклади і типи пасток вуглеводнів у піднасувних зонах Українських Карпат
    (Видавництво Львівської політехніки, 2013) Крупський, Ю. З.; Бодлак, В. П.
    Пропонується новий район пошуку вуглеводнів у „крайовому валі” Євразійської платформи в Закарпатті. Продуктивні комплекси: девон, карбон, юра, крейда, палеоген, неоген. Можливі різноманітні типи пасток. Предлагается новый район поиска углеводородов в "краевом вале" Евразийской платформы в Закарпатье. Продуктивные комплексы: девон, карбон, юра, мел, палеоген, неоген. Возможные разнообразные типы ловушек. A new area is suggested for hydrocarbon explorations in the margin shaft of the Eurasian platform, in the Transcarpathians. The productive systems: Devonian, Carboniferous, Jurassic, Cretaceous, Paleogene, Neogene. Traps of various types are possible.
  • Thumbnail Image
    Item
    Многослойная обратная линейная задача структурной гравиметрии и магнитометрии
    (Видавництво Львівської політехніки, 2012) Миненко, П. А.
    При отсутствии априорных данных о геологическом строении участка исследований структурная нелинейная обратная задача ( ОЗ) является некорректной , а ее решение неоднозначное, физически несодержательное или трудно интерпретируемое . Поэтому представляется возможным использовать фиксированную в пространстве многослойную модель линейной ОЗ с горизонтальными пластами , разбитыми на довольно большое количество блоков в виде параллелепипедов ( от 400 до 2500) и решать линейную ОЗ относительно аномальной плотности ( АП) или интенсивности намагничивания ( ИН) каждого блока. Положительный опыт решения линейных ОЗ для моделей из 3–4 слоев по 400–1200 блоков в каждом слое уже имеется, благодаря высокой устойчивости решений , получаемых итерационными фильтрационными методами. Приписывая центру каждого блока значение АП или ИН, полученное решением ОЗ, и проводя между ними в пространстве изолинии, получаем геологически содержательные, представительные и легко интерпретируемые карты и разрезы АП или ИН с участками довольно гладких изолиний или с зонами интенсивных аномалий со сложной конфигурацией изолиний. В статье приведены различные методы оптимизации решения ОЗ и методологические приемы, чередование которых при решении структурной линейной ОЗ гравиметрии или магнитометрии позволило бы использовать модель из 8 горизонтальных пластов по 400 блоков в каждом, чего уже достаточно для построения простейших, но довольно детальных вертикальных разрезов АП и ИН. У разі відсутності апріорних даних про геологічну будову ділянки досліджень структурна нелінійна обернена задача ( ОЗ) некоректна , а її розв ’ язок неоднозначний, фізично незмістовний або важкий для інтерпретації . Тому видається можливим використовувати фіксовану у просторі багато -шарову модель лінійної ОЗ з горизонтальними шарами, розбитими на досить велику кількість блоків у вигляді паралелепіпедів ( від 400 до 2500), і розв ’язувати лінійну ОЗ щодо аномальної густини ( АГ) або інтенсивності намагнічування ( ІН) кожного блока. Позитивний досвід розв ’ язання лінійних ОЗ для моделей з чотирьох шарів по 400–1200 блоків у кожному шарі вже є , завдяки високій стійкості розв ’ язків, одержуваних ітераційними фільтраційними методами. Приписуючи центру кожного блока значення АГ або ІН, отримане розв ’язком ОЗ, і проводячи між ними у просторі ізолінії, одержуємо геологічно змістовні , представницькі та легкі для інтерпретації карти та розрізи АГ або ІН з ділянками доволі гладких ізоліній та з зонами інтенсивних аномалій зі складною конфігурацією ізоліній . У статті наведено різні методи оптимізації розв ’ язання ОЗ і методологічні прийоми , чергування яких при розв ’ язанні структурної лінійної ОЗ гравіметрії або магнітометрії дало змогу використовувати модель з 8 горизонтальних шарів по 400 блоків у кожному , чого вже досить для побудови найпростіших, але доволі детальних вертикальних розрізів АГ та ІН. In the absence of a priori information about the geological structure of study area the structural nonlinear inverse problem (IP) is incorrect and its solution is ambiguous and even physically nonsense or difficult to interpretation. Therefore it is possible to use a space-fixed multilayered model of linear IP with horizontal strata which are composed of quite a large number of blocks in the boxes form (400 to 2500) and to solve the linear IP relative to anomalous density (AD) or the intensity of magnetization (IM) of each block. The positive experience of solving of linear IP for models of 4 layers with 400–1200 boxes in each layer is available due to the high stability of the solutions which are obtained by iterative filtration methods. Attributing the center of each block the AD or IM value which is obtained by solving of IP and holding isolines between them in the space we obtain the maps and sections of AD or IM which are geologically informative, inclusive and easily interpretable. They have areas of rather smooth isolines and zones of intense anomalies with a complicated configuration of isolines. In the paper the various methods of op timization of s o lutions of IP and methodological techniques is describes. Its alternation in solving of structural linear IP of gravimetry and magnetometry allows using the model of 8 horizontal layers with 400 boxes in each. That is enough to build a simple but yet quite detailed vertical AD and IM sections.
  • Thumbnail Image
    Item
    Обратная задача планетарной гравиметрии с учетом поглощения поля
    (Видавництво Львівської політехніки, 2012) Миненко, П. А.
    В связи с неоднозначностью решения обратных задач гравиметрии (ОЗГ)очень остро стоит вопрос о существовании поглощения гравитационного поля (ГП) веществом. Для определения различных коэффициентов, как меры поглощения поля, решено несколько вариантов прямых задач гравиметрии (ПЗГ) для сферы по формулам, в которых элемент поля под интегралом умножен на экспоненту с показателем в виде произведения расстояния между точкой измерения поля и элементом массы, его плотности и линейного плотностного коэффициента (ЛПК) поглощения поля, взятых для линейной или нелинейной модели в первой или второй степени. Для решения ОЗГ теоретически полученные формулы ПЗГ приравнены к экспериментальным значениям силы, тяжести измеренным на полюсе или экваторе. Эти уравнения решены относительно ЛПК, зависящего от выбранной модели поглощения. В линейной модели для каждой плотности, большей из меренной без учета поглощения поля, имеем одно положительное значение ЛПК, которое растет с увеличением плотности планеты и уменьшается с увеличением ее радиуса. В нелинейной модели для любой плотности малых планет получено три положительных значения ЛПК, а для больших – только одно, что подтверждает возможность существования явления поглощения поля. У зв ’язку з неоднозначністю розв ’язків обернених задач гравіметрії (ОЗГ) виникло серйозне питання про існування поглинання гравітаційного поля (ГП) речовиною. Для визначення різних коефіцієнтів, як міри поглинання поля, розв ’язано кілька варіантів прямих задач гравіметрії (ПЗГ) для сфери за формулами, у яких елемент поля під інтегралом помножений на експоненту з показником у вигляді добутку відстані між точкою вимірювання поля та елементом маси, густини та лінійного густинного коефіцієнта(ЛГК)поглинання поля, узятих для лінійної або нелінійної моделі у першому або другому степенях. Для розв 'язку ОЗГ теоретично отримано формули ПЗГ, прирівняні до експери-ментальних значень сили тяжіння, вимірюваних на полюсі або на екваторі. Ці рівняння розв ’язано відносно ЛГК, який залежать від вибраної моделі поглинання. У лінійній моделі для кожної густини, більшої від вимірюваної без урахування поглинання поля, маємо одне додатне значення ЛГК, що зростає зі збільшенням густини планети та зменшується зі збільшенням її радіуса. У нелінійній моделі для будь-якої густини малих планет отримано три додатних значення ЛГК, а для великих – тільки одне, що підтверджує можливість існування явища поглинання поля . In connection with ambiguity of the decision of return problems of gravimetry (RPG) very sharply there is a question on existence of absorption of a gravitational field (GF) by a substance. For definition of various factors as measures of absorption of a field some variants of direct problems of grav imetry (DPG) for sphere are solved. They are solved under formulas in which the field element under inte gral is increased on an exhibitor with an indicator in the form of distance product between a point of measurement of a field and an element of eight, its density and linear density factor (LDF) of absorption of the fiel d, the taken for linear or nonlinear model in the first or second degree. For decision of RPG we theoretically received formulas of DPG which are equal to the experimental values of gravity which are measured on a pole or an equator. These equations are solved rather of LPG depending on the chosen model of absorption. In linear model for each density, more measured without field absorption, we have one positive value LPG which grows with increase in density of a planet and decreases with increase of its radius. In nonlinear model for any density of minor planets it is received three positive values of LPG and for big – only one that confirms the possibility of existence of the phenomenon of field absorption.
  • Thumbnail Image
    Item
    Геоинформационные технологии в интерпретации геофизических данных методами новой интерпретационной гравиметрии (НИГ)
    (Національний університет “Львівська політехніка”, 2011) Гайдай, Н. К.
    Введение элементов геоинформационных технологий в процесс интерпретации аномалий поля силы тяжести привело к возможности построения трехмерных плотностных моделей земной коры любой детальности. Данные модели отвечают критериям Адамара. Полученные результаты позволили выявить новые и подтвердить ранее известные закономерности. Введення елементів геоінформаційних технологій у процес інтерпретації аномалій поля сили тяжіння привело до можливості побудови тривимірних густинних моделей земної кори довільної детальності. Дані моделі відповідають критеріям Адамара. Отримані результати дозволили виявити нові і підтвердити раніше відомізакономірності. The introduction of elements of geographic information technologies in the process of interpretation of gravity anomalies led to the possibility of constructing three-dimensional density models every detail of the earth's crust. These models meet the criteria of Hadamard. The results obtained allowed to identify new and confirm the previously known patterns.