Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Особливості одержання дисперсій поліакриламідних гідрогелів, наповнених магнетитом
    (Lviv Politechnic Publishing House, 2019-02-28) Нагорняк, М. І.; Вороновська, А. В.; Яковів, М. В.; Майкович, О. В.; Варваренко, С. М.; Nahorniak, M. I.; Voronovska, A. V.; Yakoviv, M. V.; Maikovych, O. V.; Varvarenko, S. M.; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Розглянуто проблеми введення наночастинок магнетиту в гідрогелеві дисперсії, які створені на основі поліакриламіду. Утворення полімерного каркаса гідрогелю відбувалось за рахунок збалансованої кількості поперечних зшивок між поліакриламідом та полі-N- гідроксиметилакриламідом. Вивчено структурування поліакриламіду та полі-N- (гідроксиметил)акриламіду в присутності магнетиту та солей феруму – прекурсорів магнетиту та показано вплив добавок на параметри тривимірної сітки гідрогелю. Проведено оптимізацію складу та вивчення стабільності гідрогелевої композиції у зворотних емульсіях. На основі проведених досліджень синтезовано магніточутливий матеріал у вигляді дисперсій гідрогелю з інкорпорованими частинками магнетиту.
  • Thumbnail Image
    Item
    Синтез полімерних мікрокапсул з інкапсульованими магнітними наночастинками Fe3O4
    (Видавництво Львівської політехніки, 2016) Сердюк, В. О.; Мельник, Р. І.; Борисюк, А. К.; Токарев, В. С.
    Поверхнево модифіковані магнітні наночастинки (МНЧ) оксиду заліза є новим видом функціональних матеріалів, що знаходять все ширше використання як магнітні системи виділення і доставки в біотехнології і каталізі. Метою роботи було одержання полімерних мікрокапсул з парафіновим ядром, наповненим МНЧ. Для цього спочатку методом співосадження синтезували МНЧ Fe3O4, поверхнево модифіковані олеїновою кислотою. Потім отримані МНЧ інкапсулювали у парафіновому ядрі синтезованим гетерофункціональним акрилатним кополімером, використовуючи розроблений раніше метод “екстракційно-коацерваційного” мікроінкапсулювання. В результаті отримано мікрокапсули з інкапсульованими в парафіновому ядрі наночастинками Fe3O4, характерною особливістю яких є наявність функціоналізованої полімерної оболонки і суперпарамагнітних властивостей. Surface modified iron oxide magnetic nanoparticles (MNPs) are a kind of novel functional materials, which find broadening application as the systems of magnetic separation and delivery in catalysis and biotechnology. The purpose of this study was to obtain polymer microcapsules with the paraffin core filled by MNPs. To achieve this goal, initially the Fe3O4 MNPs surface-modified with oleic acid were synthesized by coprecipitation method. Afterwards the obtained MNPs were encapsulated in the paraffin core by the synthesized heterofunctional acrylate copolymer applying the elaborated “extraction-coacervation” technique. As a result, the microcapsules with nanoparticles of Fe3O4 encapsulated in the paraffin core were obtained; their main features are the presence of functionalized polymer shell and superparamagnetic properties.
  • Thumbnail Image
    Item
    Синтез магнітонаповнених перехресно-зшитих частинок поліестеру на основі похідних глутамінової кислоти, двохатомних спиртів та гліцерину
    (Видавництво Національного університету «Львівська політехніка», 2015) Тарас, Р. С.; Самарик, В. Я.; Надашкевич, З. Я.; Ільчук, В. О.; Нагорняк, М. І.
    Отримано магнітонаповнені перехресно зшиті частинки поліестеру на основі похідних глутамінової кислоти, двохатомних спиртів та гліцерину. Такі поліестери було одержано в умовах реакції Стегліха при 15°С. Прищеплення поліестеру до магнетиту відбувається за рахунок модифікації частинок магнетиту 3-амінопропіл-триетоксисиланом. Не модифікований магнетит не можна використати для прищеплення до його поверхні поліестеру, оскільки має здатність до коагуляції. Показано, що формування перехресно-зшитого каркасу структурованого гелю визначається кількістю модифікатора поверхні. Magnet-containing cross-linked polyester particles based on the derivatives of glutamic acid, diatomic alcohols, and glycerol have been obtained. The polyester synthesis has been carried out under the Steglich reaction conditions at 15°С. Covalent grafting of polyester onto magnetite surface is due to the modification of magnetite particles with 3-aminoprophyltrietoxysilane. Unmodified magnetite cannot be used for covalent grafting because of its coagulation capacity. The study results demonstrate that the formation of the cross-linked scaffold of the structured gel is defined by the amount of surface modifier.
  • Thumbnail Image
    Item
    Синтез, структура і магнітні властивості нанорозмірних порошків феритів заліза
    (Видавництво Львівської політехніки, 2014) Юр’єв, С. О.; Ющук, С. І.
    Дрібнодисперсні порошки магнетиту отримували двома методами, які відрізнялись між собою вихідними продуктами – реагентами для його синтезу. У першому методі суміш водних розчинів хлоридів заліза FeCl2 і FeCl3 осаджували за допомогою концентрованого NH4OH до рН =8,0-10,0, а в другому – використовували розчини хімічно чистої солі Мора – Fe(NH4)2(SO4)2×6H2O та FeCl3, а осадження проводили аналогічно як і у першому методі. Отримано дрібнодисперсні порошки з розміром частинок від 5 до 25 нм. Окремі порції порошків піддавали термообробці на повітрі при температурах 300–723 К (6 год.). Такий відпал приводить до утворення γ-Fe2O3. Відпал дрібнодисперсного порошку, отриманого з розчинів хлоридів, у вакуумі 10-5 мм рт. ст. при Т=773 К протягом 20 год. приводить до утворення однофазного магнетиту Fe3O4, для якого спостерігався фазовий перехід, що було встановлено за допомогою ЯГР вимірювань. Fine magnetite powders were obtained by two methods that differed of source products - reagents for its synthesis. In the first method, a mixture of aqueous solutions of ferric chloride and FeCl2 and FeCl3 was precipitated using concentrated NH4OH to pH = 8,0 -10,0, and in the second method a chemically pure Mora salt solutions - Fe(NH4)2(SO4)2×6H2O and FeCl3 were used, and the deposition was carried out similarly as in the first method. Fine powders with particle size of 5 to 25 nm were obtained. Some portions of powders were subjected to heat treatment in air at temperatures of 300...723 K (6 hours). This annealing leads to the formation of γ-Fe2O3. The annealing of fine powder derived from chloride in vacuum 10-5 mm Hg century at T = 773 K for 20 hours leads to the formation of single-phase Fe3O4 magnetite, for which phase transition was observed and it was established with the help of NGR measurements.