Hydrocutting of frozen food products
Date
2017-01-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Lviv Politechnic Publishing House
Abstract
The article aims to determine the peculiarities of macromolecule deformation
behavior under conditions of a jet-shaping head that would allow to solve the issue related to the
mechanism of increasing water-jet cutting power with polymer additions. The roles of longitudinal
and transverse velocity gradients in the manifestation of distinctive features of polymer solution
flows are analysed.
In converging polyethyleneoxide solution flow macromolecules are forced by a hydrodynamic
field to rather strong stretching that causes the dynamic structure formation in solutions. There have
been studied experimentally velocity fields and their gradients as well as the degree of
macromolecule unrolling under pattern conditions of a jet-shaping head in polyethyleneoxide
solutions flow. In converging polymer solution flow macromolecules are forced by a hydrodynamic
field to rather strong (~ 60 % and more) stretching that causes the field restructuring. The
determined regularities of macromolecules behavior in the flow under conditions of a jet-shaping
head and manifested in this case effects of elastic deformations have paramount importance in
understanding the mechanism of “anomalously” high cutting power of water-polymer jet. The work
for the first time makes it possible to explain the nature of increased water-jet cutting power with
polymer additions when cutting food products. Understanding the nature of increased cutting power
of water-polymer jet will make it possible to develop recommendations on choosing regimes for
water-polymer jet processing of food products by cutting.
Description
Keywords
jet-shaping head, water-jet cutting, polymer solution flow, hydrodynamic field, elastic deformation, food products, water-polymer jet processing
Citation
Pogrebnyak A. Hydrocutting of frozen food products / Andriy Pogrebnyak, Volodymyr Pogrebnyak // Ukrainian Journal Of Mechanical Engineering Andmaterials Science. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 1. — P. 1–8.