Дослідження моделей для розпізнавання жестів з використанням 3D конволюційних нейронних мереж та візуальних трансформерів

Date

2023-02-28

Journal Title

Journal ISSN

Volume Title

Publisher

Видавництво Львівської політехніки
Lviv Politechnic Publishing House

Abstract

У роботі розглядається актуальне завдання розпізнавання жестів з метою реформування способів до навчання військових, способів комунікації людини та машини та вдосконалення взаємодії людини-людини та людини-машини для осіб з обмеженими можливостями. Проаналізовано методи для розпізнавання жестів руки на основі компʼютерного зору, а також з використанням глибокого навчання. Описано принципи роботи моделей з використанням 3D конволюційних нейронних мереж та трансформерів, наведено їх структурні схеми та проаналізовано особливості функціонування складових. У межах 3D-CNN архітектури розглянуто конволюційну нейронну мережу з двома конволюційними шарами та двома шарами групування. Кожна 3D згортка отримується шляхом згортки ядра 3D-фільтра і складання декількох суміжних кадрів разом для отримання 3D-куба. У межах ViT архітектури розглянуто візуальний трансформер з Linear Projection, Transformer Encoder, двома підшарами: шар Multi-head SelfAttention (MSA) та шаром прямого поширення, також відомим як Multi-Layer Perceptron (MLP). На підставі досліджених архітектур проведено навчання моделей з використанням ASL та NUS-II наборів даних та розглянуто їх ефективність після 20 навчальних епох на основі показників відтворення, точності та F1-оцінки. Визначено вплив тривалості навчання на ефективність моделі з використанням ViT архітектури після 20 та 40 навчальних епох. Продемонстровано, в яких ситуаціях 3D конволюційні нейронні мережі та візуальні трансформери показують кращі результати точності, та обмеження, притаманні кожному підходу в умовах варіативності середовища та обчислювальних потужностей. Отримали подальший розвиток інноваційні архітектури для розпізнавання жестів руки з використанням глибокого навчання для майбутніх досліджень та реалізацій у програмних продуктах.
The work primarily focuses on addressing the contemporary challenge of hand gesture recognition, driven by the overarching objectives of revolutionizing military training methodologies, enhancing human-machine interactions, and facilitating improved communication between individuals with disabilities and machines. In-depth scrutiny of the methods for hand gesture recognition involves a comprehensive analysis, encompassing both established historical computer vision approaches and the latest deep learning trends available in the present day. This investigation delves into the fundamental principles that underpin the design of models utilizing 3D convolutional neural networks and visual transformers. Within the 3D-CNN architecture that was analyzed, a convolutional neural network with two convolutional layers and two pooling layers is considered. Each 3D convolution is obtained by convolving a 3D filter kernel and summing multiple adjacent frames to create a 3D cube. The visual transformer architecture that is consisting of a visual transformer with Linear Projection, a Transformer Encoder, and two sub-layers: the Multi-head Self-Attention (MSA) layer and the feedforward layer, also known as the Multi-Layer Perceptron (MLP), is considered. This research endeavors to push the boundaries of hand gesture recognition by deploying models trained on the ASL and NUS-II datasets, which encompass a diverse array of sign language images. The performance of these models is assessed after 20 training epochs, drawing insights from various performance metrics, including recall, precision, and the F1 score. Additionally, the study investigates the impact on model performance when adopting the ViT architecture after both 20 and 40 training epochs were performed. This analysis unveils the scenarios in which 3D convolutional neural networks and visual transformers achieve superior accuracy results. Simultaneously, it sheds light on the inherent constraints that accompany each approach within the ever-evolving landscape of environmental variables and computational resources. The research identifies cutting-edge architectural paradigms for hand gesture recognition, rooted in deep learning, which hold immense promise for further exploration and eventual implementation and integration into software products.

Description

Keywords

глибоке навчання, взаємодія людини та машини, ефективність нейронних мереж, набори даних для мови жестів, deep learning, human-machine interactions, neural networks performance, sign language datasets

Citation

Чорненький В. Я. Дослідження моделей для розпізнавання жестів з використанням 3D конволюційних нейронних мереж та візуальних трансформерів / В. Я. Чорненький, І. Я. Казимира // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2023. — Том 5. — № 2. — С. 33–40.

Endorsement

Review

Supplemented By

Referenced By