Метод побудови ембедингів ознак у задачах глибинного навчання на основі онтологій

Abstract

У роботі досліджено проблему ембедингу ознак, які використовують у датасетах для навчання нейронних мереж. Використання ембедингів підвищує продуктивність нейронних мереж, а отже, є важливою ланкою підготовки даних для методів глибинного навчання. Такий процес ґрунтується на семантичній метриці. Запропоновано для ембедингу використовувати онтології предметних областей, до яких належить відповідна ознака. У цій роботі розроблено такий метод й досліджено його використання для завдання рубрикування текстових документів. Результати досліджень підтвердили перевагу розробленого методу.
This paper investigates the problem of embedding features used in datasets for training neural networks. The use of embeddings increases the performance of neural networks, and therefore is an important part of data preparation for deep learning methods. Such a process is based on semantic metrics. It is proposed to use ontologies of the subject areas to which the corresponding feature belongs for embedding. This work developed such a method and investigated its use for the task of categorizing text documents. The research results showed the advantage of the developed method.

Description

Citation

Литвин В. Метод побудови ембедингів ознак у задачах глибинного навчання на основі онтологій / Василь Литвин, Соломія Мушаста // Вісник Національного університету "Львівська політехніка". Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 13. — С. 189–197.

Endorsement

Review

Supplemented By

Referenced By