Optimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6(PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application

dc.citation.epage396
dc.citation.issue2
dc.citation.spage386
dc.contributor.affiliationShiraz University
dc.contributor.authorKarimian, Fariba
dc.contributor.authorKarimi, Gholamreza
dc.contributor.authorKhorram, Mohammad
dc.contributor.authorDaraeinejad, Reihaneh
dc.contributor.authorAbdi, Mahnaz M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:35Z
dc.date.available2024-02-12T08:30:35Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractУльтрадисперсні нановолокна з фазовим переходом на основі поліетиленгліколю 1000 (PEG1000) як матеріалу з фазовим переходом (PCM) та поліаміду 6 (PA6) як допоміжного матеріалу виготовлено методом однонаправленого електроспінінгу на систематизованій основі, запланованій програмним забезпеченням Design-Expert®. Застосовано метод поверхневого відгуку (RSM) для оптимізації параметрів та умов, що ведуть до мінімізації діаметра волокна. За допомогою центрального композиційного плану (CCD) вивчено вплив вмісту PEG, прикладеної напруги, калібра голки та швидкості потоку на характеристики волокна. Згідно з розрахунками за квадратичною моделлю, мінімальний діаметр нановолокон становить 64,33 нм; фактичний діаметр волокон, виготовлених за оптимальних умов, показав дуже низьку відносну стандартну похибку (RSE). Встановлено, що масове співвідношення PEG/ PA6 найбільше впливає на діаметр волокон. Результати FTIR та FE-SEM підтвердили інкапсуляцію PEG у PA6, і відсутність змін у морфології після тестів на нагрівання. Для подальшого дослідження морфологічної структури та якості інкапсуляції PEG1000 у матрицях PA6 композиційні волокна оброблено розчинником з використанням етанолу. Запропоновано новий інноваційний метод контролю умов електроспінінгу для інкапсуляції матеріалів з фазовим переходом у полімерних матрицях, що дуже важливо у програмах енергозбереження/енерговідновлення.
dc.description.abstractUltrafine phase change nanofibers based on polyethylene glycol 1000 (PEG1000) as phase change material (PCM) and polyamide 6 (PA6) as a supporting material were prepared in a systematic manner planned by the Design-Expert® software using the uniaxial electrospinning. Research surface methodology (RSM) was carried out to optimize the parameters and conditions leading to minimize the fiber diameter. The effect of PEG content, applied voltage, needle gauge, and flow rate on the fiber characteristics was studied by a central composite design (CCD). The minimum diameter of nanofibers was predicted by a quadratic model to be 64.33 nm and the actual fibers diameter prepared under optimal condition showed a very low relative standard error (RSE). It was shown that the PEG/PA6 mass ratio has the dominant effect on the fibers diameter. The results from FTIR and FE-SEM images confirmed well encapsulated PEG in PA6 and no leakage and morphology alterations were observed after heating tests. To further investigate morphological structure and the quality of PEG1000 encapsulation in PA6 matrices, the composite fibers underwent a solvent treatment using ethanol. The results proposed a new innovative method to control operational electrospinning conditions for encapsulating phase change materials in polymer matrices which is very important in thermal energy saving/retrieving applications.
dc.format.extent386-396
dc.format.pages11
dc.identifier.citationOptimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6(PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application / Fariba Karimian, Gholamreza Karimi, Mohammad Khorram, Reihaneh Daraeinejad, Mahnaz M. Abdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 386–396.
dc.identifier.citationenOptimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6(PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application / Fariba Karimian, Gholamreza Karimi, Mohammad Khorram, Reihaneh Daraeinejad, Mahnaz M. Abdi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 386–396.
dc.identifier.doidoi.org/10.23939/chcht17.02.386
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61242
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Van Do, C.; Nguyen, T.T.T.; Park, J.S. Fabrication of Polyethylene Glycol/Polyvinylidene Fluoride Core/Shell Nanofibers via Melt Electrospinning and their Characteristics. Sol. Energy Mater. Sol. Cells 2012, 104, 131-139. https://doi.org/10.1016/j.solmat.2012.04.029
dc.relation.references[2] Riffat, S.; Mempouo, B.; Fang, W. Phase Change Material Developments: A Review. Int. J. Ambient Energy 2013, 36, 102-115. https://doi.org/10.1080/01430750.2013.823106
dc.relation.references[3] Iqbal, K.; Sun, D. Development of Thermo-Regulating Polypropylene Fibre Containing Microencapsulated Phase Change Materials. Renew. Energy 2014, 71, 473-479. https://doi.org/10.1016/j.renene.2014.05.063
dc.relation.references[4] Golestaneh, S.I.; Mosallanejad, A.; Karimi, G.; Khorram, M.; Khashi, M. Fabrication and Characterization of Phase Change Material Composite Fibers with Wide Phase-Transition Temperature Range by Co-Electrospinning Method. Appl. Energy 2016, 182, 409-417. https://doi.org/10.1016/j.apenergy.2016.08.136
dc.relation.references[5] Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W. et al. Effects of Nano-SiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials. Appl. Energy 2011, 88, 2106-2112. https://doi.org/10.1016/j.apenergy.2010.12.071
dc.relation.references[6] Cai, Y.; Xu, X.; Gao, C.; Bian, T.; Qiao, H.; Wei, Q. Structural Morphology and Thermal Performance of Composite Phase Change Materials Consisting of Capric Acid Series Fatty Acid Eutectics and Electrospun Polyamide6 Nanofibers for Thermal Energy Storage. Mater Lett. 2012, 89, 43-46. https://doi.org/10.1016/j.matlet.2012.08.067
dc.relation.references[7] Wu, Y.; Chen, C.; Jia, Y.; Wu, J.; Huang, Y.; Wang, L. Review on Electrospun Ultrafine Phase Change Fibers (PCFs) for Thermal Energy Storage. Appl. Energy 2018, 210, 167-181. https://doi.org/10.1016/j.apenergy.2017.11.001
dc.relation.references[8] Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318-345. https://doi.org/10.1016/j.rser.2007.10.005
dc.relation.references[9] Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Appl. Therm. Eng. 2017, 127, 1427-1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161
dc.relation.references[10] Sarier, N.; Onder, E. Organic Phase Change Materials and their Textile Applications: An Overview. Thermochimica Acta 2012, 540, 7-60. https://doi.org/10.1016/j.tca.2012.04.013
dc.relation.references[11] Cai, Y.; Zong, X.; Zhang, J.; Hu, Y.; Wei, Q.; He, G.; Wang, X.; Zhao, Y.; Fong, H. Electrospun Nanofibrous Mats Absorbed with Fatty Acid Eutectics as an Innovative Type of Form-Stable Phase Change Materials for Storage and Retrieval of Thermal Energy. Sol. Energy Mater. Sol. Cells 2013, 109, 160-168. https://doi.org/10.1016/j.solmat.2012.10.022
dc.relation.references[12] Chen, C.; Liu, K.; Wang, H.; Liu, W.; Zhang, H. Morphology and Performances of Electrospun Polyethylene Glycol/Poly(DL-Lactide) Phase Change Ultrafine Fibers for Thermal Energy Storage. Sol. Energy Mater Sol. Cells 2013, 117, 372-381. https://doi.org/10.1016/j.solmat.2013.07.001
dc.relation.references[13] Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Optimization of Solvents for the Encapsulation of a Phase Change Material in Polymeric Matrices by Electro-Hydrodynamic Processing of Interest in Temperature Buffering Food Applications. Eur. Polym. J. 2015, 72, 23-33. https://doi.org/10.1016/j.eurpolymj.2015.08.033
dc.relation.references[14] Na, P.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401-1424. https://doi.org/10.1016/j.progpolymsci.2012.01.001
dc.relation.references[15] Tort, S.; Acartürk, F. Preparation and Characterization of Electrospun Nanofibers Containing Glutamine. Carbohydr. Polym. 2016, 152, 802-814. https://doi.org/10.1016/j.carbpol.2016.07.028
dc.relation.references[16] Akhtar, M.N.; Sulong, A.B.; Karim, S.A.; Azhari, C.H.; Raza M. R. Evaluation of Thermal, Morphological and Mechanical Properties of PMMA/NaCl/DMF Electrospun Nanofibers: An Investigation Through Surface Methodology Approach. Iran. Polym. J. 2015, 24, 1025-1038. https://doi.org/10.1007/s13726-015-0390-8
dc.relation.references[17] Sedghi, R.; Shaabani, A. Electrospun Biocompatible Core/Shell Polymer-Free Core Structure Nanofibers with Superior Antimicrobial Potency Against Multi Drug Resistance Organisms. Polymer 2016, 101, 151-157. https://doi.org/10.1016/j.polymer.2016.08.060
dc.relation.references[18] Stepanyan, R.; Subbotin, A.V.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.J.H. Nanofiber Diameter in Electrospinning of Polymer Solutions: Model and Experiment. Polymer 2016, 97, 428-439. https://doi.org/10.1016/j.polymer.2016.05.045
dc.relation.references[19] McCann, J.T.; Marquez, M.; Xia, Y. Melt Coaxial Electrospinning:  A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006, 12, 2868-2872. https://doi.org/10.1021/nl0620839
dc.relation.references[20] Chen, C.; Wang, L.; Huang, Y. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382-1387. https://doi.org/10.1016/j.solmat.2008.05.013
dc.relation.references[21] Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of Zein-Based Heat-Management Structures for Smart Food Packaging. Food Hydrocoll. 2013, 30, 182-191. https://doi.org/10.1016/j.foodhyd.2012.05.010
dc.relation.references[22] Kulkarni, A.; Bambole, V.A.; Mahanwar, P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010, 49, 427-441. https://doi.org/10.1080/03602550903414019
dc.relation.references[23] Saeed, M.J.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process. Eng. 2015, 8, e7-e16. https://doi.org/10.1016/j.jwpe.2014.11.001
dc.relation.references[24] Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
dc.relation.references[25] Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons, Inc.: Arizona, 2011.
dc.relation.references[26] Hafizi, A.; Ahmadpour, A.; Koolivand-Salooki, M.; Koolivand- Salooki, M.; Heravi, M.M.; Bamoharram, F.F. Comparison of RSM and ANN for the Investigation of Linear Alkylbenzene Synthesis over H14[NaP5W30O110]/SiO2 Catalyst. J. Ind. Eng. Chem. 2013, 19, 1981-1989. https://doi.org/10.1016/j.jiec.2013.03.007
dc.relation.references[27] Chen, C.; Liu, W.; Yang, H.; Zhao, Y.; Liu, S. Synthesis of Solid–Solid Phase Change Material for Thermal Energy Storage by Crosslinking of Polyethylene Glycol with Poly (Glycidyl Methacrylate). Sol. Energy 2011, 85, 2679-2685. https://doi.org/10.1016/j.solener.2011.08.002
dc.relation.references[28] Sarı, A.; Alkan, C.; Biçer, A. Synthesis and Thermal Properties of Polystyrene-Graft-PEG Copolymers as New Kinds of Solid–Solid Phase Change Materials for Thermal Energy Storage. Mater. Chem. Phys. 2012, 133, 87-94. https://doi.org/10.1016/j.matchemphys.2011.12.056
dc.relation.references[29] Dang, T.N.; Nguyen, T.T.T.; Chung, O.H.; Park, J.S. Fabrication of Form-Stable Poly(ethylene glycol)-Loaded Poly(vinylidene fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromol. Res. 2015, 23, 819-829. https://doi.org/10.1007/s13233-015-3109-y
dc.relation.references[30] Nguyen, T.T.T.; Park, J.S. Fabrication of Electrospun Nonwoven Mats of Polyvinylidene Fluoride/Polyethylene Glycol/Fumed Silica for Use as Energy Storage Materials. J. Appl. Polym. Sci. 2011, 121, 3596-3603. https://doi.org/10.1002/app.34148
dc.relation.references[31] Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning. Appl. Therm. Eng. 2016, 99, 1225-1235. https://doi.org/10.1016/j.applthermaleng.2016.02.026
dc.relation.references[32] Babapoor, A.; Karimi, G.; Golestaneh, S.I.; Mezjin, M.A. Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Appl. Therm. Eng. 2017, 118, 398-407. https://doi.org/10.1016/j.applthermaleng.2017.02.119
dc.relation.references[33] Shi, Q.; Liu, Z.; Jin, X.; Shen, Y.; Liu, Y. Electrospun Fibers Based on Polyvinyl Pyrrolidone/Eu-polyethylene Glycol as Phase Change Luminescence Materials. Mater. Lett. 2015, 147, 113-115. https://doi.org/10.1016/j.matlet.2015.02.040
dc.relation.references[34] Noshadi, I.; Amin, N.A.S.; Parnas, R.S. Continuous Production of Biodiesel from Waste Cooking Oil in a Reactive Distillation Column Catalyzed by Solid Heteropolyacid: Optimization Using Response Surface Methodology (RSM). Fuel 2012, 94, 156-164. https://doi.org/10.1016/j.fuel.2011.10.018
dc.relation.references[35] Hafizi, A.;Ahmadpour, A.; Heravi, M.M.; Bamoharram, F.F.; Khosroshahi, M. Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology. Chinese J. Catal. 2012, 33, 494-501. https://doi.org/10.1016/S1872-2067(11)60357-4
dc.relation.references[36] Forutan, H.R.; Karimi, E.; Hafizi, A.; Rahimpour, M.R.; Keshavarz, P. Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3. J. Ind. Eng. Chem. 2015, 21, 900-911. https://doi.org/10.1016/j.jiec.2014.04.031
dc.relation.references[37] Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518-526. https://doi.org/10.1016/j.jtice.2013.04.016
dc.relation.references[38] Chen, C.; Wang, L.; Huang, Y. Electrospun Phase Change Fibers Based on Polyethylene Glycol/cellulose Acetate Blends. Appl. Energy 2011, 88, 3133-3139. https://doi.org/10.1016/j.apenergy.2011.02.026
dc.relation.references[39] Šehić, A.; Tomšič, B.; Jerman, I.; Vasiljević, J.; Medved, J.; Simončič, B. Synergistic Inhibitory Action of P- and Si-containing Precursors in Sol–Gel Coatings on the Thermal Degradation of Polyamide 6. Polym. Degrad. Stab. 2016, 128, 245-252. https://doi.org/10.1016/j.polymdegradstab.2016.03.026
dc.relation.references[40] Wu, Q.; Lü, J.; Qu, B. Preparation and Characterization of Microcapsulated Red Phosphorus and its Flame-Retardant Mechanism in Halogen-Free Flame Retardant Polyolefins. Polym. Int. 2003, 52, 1326-1331. https://doi.org/10.1002/pi.1115
dc.relation.referencesen[1] Van Do, C.; Nguyen, T.T.T.; Park, J.S. Fabrication of Polyethylene Glycol/Polyvinylidene Fluoride Core/Shell Nanofibers via Melt Electrospinning and their Characteristics. Sol. Energy Mater. Sol. Cells 2012, 104, 131-139. https://doi.org/10.1016/j.solmat.2012.04.029
dc.relation.referencesen[2] Riffat, S.; Mempouo, B.; Fang, W. Phase Change Material Developments: A Review. Int. J. Ambient Energy 2013, 36, 102-115. https://doi.org/10.1080/01430750.2013.823106
dc.relation.referencesen[3] Iqbal, K.; Sun, D. Development of Thermo-Regulating Polypropylene Fibre Containing Microencapsulated Phase Change Materials. Renew. Energy 2014, 71, 473-479. https://doi.org/10.1016/j.renene.2014.05.063
dc.relation.referencesen[4] Golestaneh, S.I.; Mosallanejad, A.; Karimi, G.; Khorram, M.; Khashi, M. Fabrication and Characterization of Phase Change Material Composite Fibers with Wide Phase-Transition Temperature Range by Co-Electrospinning Method. Appl. Energy 2016, 182, 409-417. https://doi.org/10.1016/j.apenergy.2016.08.136
dc.relation.referencesen[5] Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W. et al. Effects of Nano-SiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials. Appl. Energy 2011, 88, 2106-2112. https://doi.org/10.1016/j.apenergy.2010.12.071
dc.relation.referencesen[6] Cai, Y.; Xu, X.; Gao, C.; Bian, T.; Qiao, H.; Wei, Q. Structural Morphology and Thermal Performance of Composite Phase Change Materials Consisting of Capric Acid Series Fatty Acid Eutectics and Electrospun Polyamide6 Nanofibers for Thermal Energy Storage. Mater Lett. 2012, 89, 43-46. https://doi.org/10.1016/j.matlet.2012.08.067
dc.relation.referencesen[7] Wu, Y.; Chen, C.; Jia, Y.; Wu, J.; Huang, Y.; Wang, L. Review on Electrospun Ultrafine Phase Change Fibers (PCFs) for Thermal Energy Storage. Appl. Energy 2018, 210, 167-181. https://doi.org/10.1016/j.apenergy.2017.11.001
dc.relation.referencesen[8] Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318-345. https://doi.org/10.1016/j.rser.2007.10.005
dc.relation.referencesen[9] Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Appl. Therm. Eng. 2017, 127, 1427-1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161
dc.relation.referencesen[10] Sarier, N.; Onder, E. Organic Phase Change Materials and their Textile Applications: An Overview. Thermochimica Acta 2012, 540, 7-60. https://doi.org/10.1016/j.tca.2012.04.013
dc.relation.referencesen[11] Cai, Y.; Zong, X.; Zhang, J.; Hu, Y.; Wei, Q.; He, G.; Wang, X.; Zhao, Y.; Fong, H. Electrospun Nanofibrous Mats Absorbed with Fatty Acid Eutectics as an Innovative Type of Form-Stable Phase Change Materials for Storage and Retrieval of Thermal Energy. Sol. Energy Mater. Sol. Cells 2013, 109, 160-168. https://doi.org/10.1016/j.solmat.2012.10.022
dc.relation.referencesen[12] Chen, C.; Liu, K.; Wang, H.; Liu, W.; Zhang, H. Morphology and Performances of Electrospun Polyethylene Glycol/Poly(DL-Lactide) Phase Change Ultrafine Fibers for Thermal Energy Storage. Sol. Energy Mater Sol. Cells 2013, 117, 372-381. https://doi.org/10.1016/j.solmat.2013.07.001
dc.relation.referencesen[13] Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Optimization of Solvents for the Encapsulation of a Phase Change Material in Polymeric Matrices by Electro-Hydrodynamic Processing of Interest in Temperature Buffering Food Applications. Eur. Polym. J. 2015, 72, 23-33. https://doi.org/10.1016/j.eurpolymj.2015.08.033
dc.relation.referencesen[14] Na, P.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401-1424. https://doi.org/10.1016/j.progpolymsci.2012.01.001
dc.relation.referencesen[15] Tort, S.; Acartürk, F. Preparation and Characterization of Electrospun Nanofibers Containing Glutamine. Carbohydr. Polym. 2016, 152, 802-814. https://doi.org/10.1016/j.carbpol.2016.07.028
dc.relation.referencesen[16] Akhtar, M.N.; Sulong, A.B.; Karim, S.A.; Azhari, C.H.; Raza M. R. Evaluation of Thermal, Morphological and Mechanical Properties of PMMA/NaCl/DMF Electrospun Nanofibers: An Investigation Through Surface Methodology Approach. Iran. Polym. J. 2015, 24, 1025-1038. https://doi.org/10.1007/s13726-015-0390-8
dc.relation.referencesen[17] Sedghi, R.; Shaabani, A. Electrospun Biocompatible Core/Shell Polymer-Free Core Structure Nanofibers with Superior Antimicrobial Potency Against Multi Drug Resistance Organisms. Polymer 2016, 101, 151-157. https://doi.org/10.1016/j.polymer.2016.08.060
dc.relation.referencesen[18] Stepanyan, R.; Subbotin, A.V.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.J.H. Nanofiber Diameter in Electrospinning of Polymer Solutions: Model and Experiment. Polymer 2016, 97, 428-439. https://doi.org/10.1016/j.polymer.2016.05.045
dc.relation.referencesen[19] McCann, J.T.; Marquez, M.; Xia, Y. Melt Coaxial Electrospinning:  A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006, 12, 2868-2872. https://doi.org/10.1021/nl0620839
dc.relation.referencesen[20] Chen, C.; Wang, L.; Huang, Y. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382-1387. https://doi.org/10.1016/j.solmat.2008.05.013
dc.relation.referencesen[21] Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of Zein-Based Heat-Management Structures for Smart Food Packaging. Food Hydrocoll. 2013, 30, 182-191. https://doi.org/10.1016/j.foodhyd.2012.05.010
dc.relation.referencesen[22] Kulkarni, A.; Bambole, V.A.; Mahanwar, P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010, 49, 427-441. https://doi.org/10.1080/03602550903414019
dc.relation.referencesen[23] Saeed, M.J.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process. Eng. 2015, 8, e7-e16. https://doi.org/10.1016/j.jwpe.2014.11.001
dc.relation.referencesen[24] Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
dc.relation.referencesen[25] Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons, Inc., Arizona, 2011.
dc.relation.referencesen[26] Hafizi, A.; Ahmadpour, A.; Koolivand-Salooki, M.; Koolivand- Salooki, M.; Heravi, M.M.; Bamoharram, F.F. Comparison of RSM and ANN for the Investigation of Linear Alkylbenzene Synthesis over H14[NaP5W30O110]/SiO2 Catalyst. J. Ind. Eng. Chem. 2013, 19, 1981-1989. https://doi.org/10.1016/j.jiec.2013.03.007
dc.relation.referencesen[27] Chen, C.; Liu, W.; Yang, H.; Zhao, Y.; Liu, S. Synthesis of Solid–Solid Phase Change Material for Thermal Energy Storage by Crosslinking of Polyethylene Glycol with Poly (Glycidyl Methacrylate). Sol. Energy 2011, 85, 2679-2685. https://doi.org/10.1016/j.solener.2011.08.002
dc.relation.referencesen[28] Sarı, A.; Alkan, C.; Biçer, A. Synthesis and Thermal Properties of Polystyrene-Graft-PEG Copolymers as New Kinds of Solid–Solid Phase Change Materials for Thermal Energy Storage. Mater. Chem. Phys. 2012, 133, 87-94. https://doi.org/10.1016/j.matchemphys.2011.12.056
dc.relation.referencesen[29] Dang, T.N.; Nguyen, T.T.T.; Chung, O.H.; Park, J.S. Fabrication of Form-Stable Poly(ethylene glycol)-Loaded Poly(vinylidene fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromol. Res. 2015, 23, 819-829. https://doi.org/10.1007/s13233-015-3109-y
dc.relation.referencesen[30] Nguyen, T.T.T.; Park, J.S. Fabrication of Electrospun Nonwoven Mats of Polyvinylidene Fluoride/Polyethylene Glycol/Fumed Silica for Use as Energy Storage Materials. J. Appl. Polym. Sci. 2011, 121, 3596-3603. https://doi.org/10.1002/app.34148
dc.relation.referencesen[31] Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning. Appl. Therm. Eng. 2016, 99, 1225-1235. https://doi.org/10.1016/j.applthermaleng.2016.02.026
dc.relation.referencesen[32] Babapoor, A.; Karimi, G.; Golestaneh, S.I.; Mezjin, M.A. Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Appl. Therm. Eng. 2017, 118, 398-407. https://doi.org/10.1016/j.applthermaleng.2017.02.119
dc.relation.referencesen[33] Shi, Q.; Liu, Z.; Jin, X.; Shen, Y.; Liu, Y. Electrospun Fibers Based on Polyvinyl Pyrrolidone/Eu-polyethylene Glycol as Phase Change Luminescence Materials. Mater. Lett. 2015, 147, 113-115. https://doi.org/10.1016/j.matlet.2015.02.040
dc.relation.referencesen[34] Noshadi, I.; Amin, N.A.S.; Parnas, R.S. Continuous Production of Biodiesel from Waste Cooking Oil in a Reactive Distillation Column Catalyzed by Solid Heteropolyacid: Optimization Using Response Surface Methodology (RSM). Fuel 2012, 94, 156-164. https://doi.org/10.1016/j.fuel.2011.10.018
dc.relation.referencesen[35] Hafizi, A.;Ahmadpour, A.; Heravi, M.M.; Bamoharram, F.F.; Khosroshahi, M. Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology. Chinese J. Catal. 2012, 33, 494-501. https://doi.org/10.1016/S1872-2067(11)60357-4
dc.relation.referencesen[36] Forutan, H.R.; Karimi, E.; Hafizi, A.; Rahimpour, M.R.; Keshavarz, P. Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3. J. Ind. Eng. Chem. 2015, 21, 900-911. https://doi.org/10.1016/j.jiec.2014.04.031
dc.relation.referencesen[37] Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518-526. https://doi.org/10.1016/j.jtice.2013.04.016
dc.relation.referencesen[38] Chen, C.; Wang, L.; Huang, Y. Electrospun Phase Change Fibers Based on Polyethylene Glycol/cellulose Acetate Blends. Appl. Energy 2011, 88, 3133-3139. https://doi.org/10.1016/j.apenergy.2011.02.026
dc.relation.referencesen[39] Šehić, A.; Tomšič, B.; Jerman, I.; Vasiljević, J.; Medved, J.; Simončič, B. Synergistic Inhibitory Action of P- and Si-containing Precursors in Sol–Gel Coatings on the Thermal Degradation of Polyamide 6. Polym. Degrad. Stab. 2016, 128, 245-252. https://doi.org/10.1016/j.polymdegradstab.2016.03.026
dc.relation.referencesen[40] Wu, Q.; Lü, J.; Qu, B. Preparation and Characterization of Microcapsulated Red Phosphorus and its Flame-Retardant Mechanism in Halogen-Free Flame Retardant Polyolefins. Polym. Int. 2003, 52, 1326-1331. https://doi.org/10.1002/pi.1115
dc.relation.urihttps://doi.org/10.1016/j.solmat.2012.04.029
dc.relation.urihttps://doi.org/10.1080/01430750.2013.823106
dc.relation.urihttps://doi.org/10.1016/j.renene.2014.05.063
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2016.08.136
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2010.12.071
dc.relation.urihttps://doi.org/10.1016/j.matlet.2012.08.067
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2017.11.001
dc.relation.urihttps://doi.org/10.1016/j.rser.2007.10.005
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2017.08.161
dc.relation.urihttps://doi.org/10.1016/j.tca.2012.04.013
dc.relation.urihttps://doi.org/10.1016/j.solmat.2012.10.022
dc.relation.urihttps://doi.org/10.1016/j.solmat.2013.07.001
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2015.08.033
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2012.01.001
dc.relation.urihttps://doi.org/10.1016/j.carbpol.2016.07.028
dc.relation.urihttps://doi.org/10.1007/s13726-015-0390-8
dc.relation.urihttps://doi.org/10.1016/j.polymer.2016.08.060
dc.relation.urihttps://doi.org/10.1016/j.polymer.2016.05.045
dc.relation.urihttps://doi.org/10.1021/nl0620839
dc.relation.urihttps://doi.org/10.1016/j.solmat.2008.05.013
dc.relation.urihttps://doi.org/10.1016/j.foodhyd.2012.05.010
dc.relation.urihttps://doi.org/10.1080/03602550903414019
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2014.11.001
dc.relation.urihttps://doi.org/10.1016/j.talanta.2008.05.019
dc.relation.urihttps://doi.org/10.1016/j.jiec.2013.03.007
dc.relation.urihttps://doi.org/10.1016/j.solener.2011.08.002
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2011.12.056
dc.relation.urihttps://doi.org/10.1007/s13233-015-3109-y
dc.relation.urihttps://doi.org/10.1002/app.34148
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2016.02.026
dc.relation.urihttps://doi.org/10.1016/j.applthermaleng.2017.02.119
dc.relation.urihttps://doi.org/10.1016/j.matlet.2015.02.040
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.10.018
dc.relation.urihttps://doi.org/10.1016/S1872-2067(11)60357-4
dc.relation.urihttps://doi.org/10.1016/j.jiec.2014.04.031
dc.relation.urihttps://doi.org/10.1016/j.jtice.2013.04.016
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2011.02.026
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2016.03.026
dc.relation.urihttps://doi.org/10.1002/pi.1115
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Karimian F., Karimi G., Khorram M., Daraeinejad R., Abdi M., 2023
dc.subjectелектроспінінг
dc.subjectматеріал з фазовим переходом (PCM)
dc.subjectметод поверхневого відгуку (RSM)
dc.subjectполіетиленгліколь
dc.subjectполіамід 6
dc.subjectelectrospinning
dc.subjectphase change material (PCM)
dc.subjectresponse surface methodology (RSM)
dc.subjectpolyethylene glycol
dc.subjectpolyamide 6
dc.titleOptimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6(PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application
dc.title.alternativeОптимізований дизайн та одержання поліетиленгліколь 1000/поліамід 6 (PEG1000/PA6) нановолокон як матеріалів з фазовим переходом (PCMS)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Karimian_F-Optimized_Design_and_Fabrication_386-396.pdf
Size:
697.27 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Karimian_F-Optimized_Design_and_Fabrication_386-396__COVER.png
Size:
560.55 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: