Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction

dc.citation.epage710
dc.citation.issue3
dc.citation.spage701
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationDanylo Halytsky Lviv National Medical University
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorDonchenko, Myroslava
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorDrapak, Iryna
dc.contributor.authorBratychak, Michael
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:52:04Z
dc.date.available2024-02-12T08:52:04Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПроведено модифікування гудронів формаліном (37 %-м водним розчином формальдегіду) із використанням різних кислот, як каталізаторів процесу, із метою одержання нових в’яжучих матеріалів для дорожнього будівництва. Як каталізатор використовували H2SO4, HCl, H3PO4 та CH3COOH. Процес модифікування проводили в діапазоні температур 378-403 К та тривалості 0,6-1,0 год. Досліджено реологічні властивості гудронів, модифікованих формальдегідом, за 333, 343 та 353 К, та проведено порівняння реологічних властивостей отриманих бітумних в’яжучих матеріалів з окисненими бітумами.
dc.description.abstractModification of tars with formalin (37% aqueous solution of formaldehyde) was carried out using various acids as process catalysts with the aim of obtaining new binding materials for road construction. H2SO4, HCl, H3PO4, and CH3COOH were used as catalysts. The modification process was carried out in the temperature range of 378-403 K and for a duration of 0.6-1.0 h. The rheological properties of tars modified with formaldehyde at 333, 343, and 353 K were studied and a comparison of the rheological properties of the obtained bituminous binder materials with oxidized bitumens was carried out.
dc.format.extent701-710
dc.format.pages10
dc.identifier.citationProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction / Volodymyr Gunka, Myroslava Donchenko, Yuriy Demchuk, Iryna Drapak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 701–710.
dc.identifier.citationenProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction / Volodymyr Gunka, Myroslava Donchenko, Yuriy Demchuk, Iryna Drapak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 701–710.
dc.identifier.doidoi.org/10.23939/chcht17.03.701
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61277
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742
dc.relation.references[2] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015; pp 1-463. ISBN: 0 7277 3220 X
dc.relation.references[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.references[4] Baldino, N.; Gabriele, D.; Lupi, F.R.; Rossi, C.O.; Caputo, P.; Falvo, T. Rheological Effects On Bitumen Of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
dc.relation.references[5] Özdemir, D.K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 1-8. https://doi.org/10.1016/j.conbuildmat.2021.124041
dc.relation.references[6] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect Of Silane Coupling Agent On Improving The Adhesive Properties Between Asphalt Binder And Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.references[7] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.references[8] Bagshaw, S.A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802
dc.relation.references[9] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
dc.relation.references[10] Mamuye, Y.; Liao, M.C.; Do, N.D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and Their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.127304
dc.relation.references[11] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Dem-chuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
dc.relation.references[12] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.references[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Mod-ified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
dc.relation.references[14] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.references[15] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206.
dc.relation.references[16] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1
dc.relation.references[17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pave-ment. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
dc.relation.references[18] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.references[19] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
dc.relation.references[20] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.references[22] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[23] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[24] Gunka, V.; Hrynchuk, Y.; Demchuk, Y.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy V.; Astakhova O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211
dc.relation.references[25] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.references[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.references[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[28] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019.
dc.relation.references[29] DSTU 9116:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Polymer Modified Road Bitumen. Specification, 2022.
dc.relation.references[30] SОU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017.
dc.relation.references[31] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitu-men’s, modified by adhesion promoters. Specifications, 2011.
dc.relation.references[32] DSTU EN 13302:2019 (National Standard of Ukraine), Bitu-men and bituminous binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus, 2020.
dc.relation.references[33] DSTU EN 12591:2017 (National Standard of Ukraine), Bitu-men and bituminous binders. Specifications for Paving Grade Bitumens, 2017.
dc.relation.referencesen[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742
dc.relation.referencesen[2] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015; pp 1-463. ISBN: 0 7277 3220 X
dc.relation.referencesen[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.referencesen[4] Baldino, N.; Gabriele, D.; Lupi, F.R.; Rossi, C.O.; Caputo, P.; Falvo, T. Rheological Effects On Bitumen Of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
dc.relation.referencesen[5] Özdemir, D.K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 1-8. https://doi.org/10.1016/j.conbuildmat.2021.124041
dc.relation.referencesen[6] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect Of Silane Coupling Agent On Improving The Adhesive Properties Between Asphalt Binder And Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.referencesen[7] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.referencesen[8] Bagshaw, S.A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802
dc.relation.referencesen[9] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
dc.relation.referencesen[10] Mamuye, Y.; Liao, M.C.; Do, N.D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and Their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.127304
dc.relation.referencesen[11] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Dem-chuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
dc.relation.referencesen[12] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.referencesen[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Mod-ified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
dc.relation.referencesen[14] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.referencesen[15] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206.
dc.relation.referencesen[16] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1
dc.relation.referencesen[17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pave-ment. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
dc.relation.referencesen[18] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.referencesen[19] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
dc.relation.referencesen[20] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.referencesen[22] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[23] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[24] Gunka, V.; Hrynchuk, Y.; Demchuk, Y.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy V.; Astakhova O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211
dc.relation.referencesen[25] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.referencesen[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesen[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[28] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019.
dc.relation.referencesen[29] DSTU 9116:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Polymer Modified Road Bitumen. Specification, 2022.
dc.relation.referencesen[30] SOU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017.
dc.relation.referencesen[31] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitu-men’s, modified by adhesion promoters. Specifications, 2011.
dc.relation.referencesen[32] DSTU EN 13302:2019 (National Standard of Ukraine), Bitu-men and bituminous binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus, 2020.
dc.relation.referencesen[33] DSTU EN 12591:2017 (National Standard of Ukraine), Bitu-men and bituminous binders. Specifications for Paving Grade Bitumens, 2017.
dc.relation.urihttps://doi.org/10.3390/app9040742
dc.relation.urihttps://doi.org/10.3390/ma15051774
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2012.11.001
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.124041
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.02.186
dc.relation.urihttps://doi.org/10.1016/j.fuel.2011.02.035
dc.relation.urihttps://doi.org/10.1080/14680629.2018.1468802
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.03.151
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.127304
dc.relation.urihttps://doi.org/10.23939/chcht15.03.443
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.urihttps://doi.org/10.23939/chcht15.01.142
dc.relation.urihttps://doi.org/10.23939/chcht09.01.069
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_1
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1828154
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.23939/chcht15.03.438
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.23939/chcht17.01.211
dc.relation.urihttps://doi.org/10.3390/ma15165693
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2022.103191
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Gunka V., Donchenko M., Demchuk Yu., Drapak I., Bratychak M., 2023
dc.subjectгудрон
dc.subjectбітум
dc.subjectформальдегід
dc.subjectхімічне модифікування
dc.subjecttar
dc.subjectbitumen
dc.subjectformaldehyde
dc.subjectchemical modification
dc.titleProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction
dc.title.alternativeОдержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 8. Перспективи використання гудронів, модифікованих формальдегідом, у дорожньому будівництві
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Gunka_V-Production_of_Bitumen_Modified_701-710.pdf
Size:
712.88 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Gunka_V-Production_of_Bitumen_Modified_701-710__COVER.png
Size:
546.8 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: