Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction
dc.citation.epage | 710 | |
dc.citation.issue | 3 | |
dc.citation.spage | 701 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Danylo Halytsky Lviv National Medical University | |
dc.contributor.author | Gunka, Volodymyr | |
dc.contributor.author | Donchenko, Myroslava | |
dc.contributor.author | Demchuk, Yuriy | |
dc.contributor.author | Drapak, Iryna | |
dc.contributor.author | Bratychak, Michael | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:04Z | |
dc.date.available | 2024-02-12T08:52:04Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Проведено модифікування гудронів формаліном (37 %-м водним розчином формальдегіду) із використанням різних кислот, як каталізаторів процесу, із метою одержання нових в’яжучих матеріалів для дорожнього будівництва. Як каталізатор використовували H2SO4, HCl, H3PO4 та CH3COOH. Процес модифікування проводили в діапазоні температур 378-403 К та тривалості 0,6-1,0 год. Досліджено реологічні властивості гудронів, модифікованих формальдегідом, за 333, 343 та 353 К, та проведено порівняння реологічних властивостей отриманих бітумних в’яжучих матеріалів з окисненими бітумами. | |
dc.description.abstract | Modification of tars with formalin (37% aqueous solution of formaldehyde) was carried out using various acids as process catalysts with the aim of obtaining new binding materials for road construction. H2SO4, HCl, H3PO4, and CH3COOH were used as catalysts. The modification process was carried out in the temperature range of 378-403 K and for a duration of 0.6-1.0 h. The rheological properties of tars modified with formaldehyde at 333, 343, and 353 K were studied and a comparison of the rheological properties of the obtained bituminous binder materials with oxidized bitumens was carried out. | |
dc.format.extent | 701-710 | |
dc.format.pages | 10 | |
dc.identifier.citation | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction / Volodymyr Gunka, Myroslava Donchenko, Yuriy Demchuk, Iryna Drapak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 701–710. | |
dc.identifier.citationen | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction / Volodymyr Gunka, Myroslava Donchenko, Yuriy Demchuk, Iryna Drapak, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 701–710. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.701 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61277 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742 | |
dc.relation.references | [2] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015; pp 1-463. ISBN: 0 7277 3220 X | |
dc.relation.references | [3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.references | [4] Baldino, N.; Gabriele, D.; Lupi, F.R.; Rossi, C.O.; Caputo, P.; Falvo, T. Rheological Effects On Bitumen Of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001 | |
dc.relation.references | [5] Özdemir, D.K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 1-8. https://doi.org/10.1016/j.conbuildmat.2021.124041 | |
dc.relation.references | [6] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect Of Silane Coupling Agent On Improving The Adhesive Properties Between Asphalt Binder And Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.references | [7] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.references | [8] Bagshaw, S.A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802 | |
dc.relation.references | [9] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151 | |
dc.relation.references | [10] Mamuye, Y.; Liao, M.C.; Do, N.D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and Their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.127304 | |
dc.relation.references | [11] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Dem-chuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.references | [12] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
dc.relation.references | [13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Mod-ified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.references | [14] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.references | [15] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206. | |
dc.relation.references | [16] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1 | |
dc.relation.references | [17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pave-ment. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.references | [18] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.references | [19] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
dc.relation.references | [20] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.references | [22] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.references | [23] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.references | [24] Gunka, V.; Hrynchuk, Y.; Demchuk, Y.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy V.; Astakhova O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211 | |
dc.relation.references | [25] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.references | [26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.references | [27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.references | [28] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019. | |
dc.relation.references | [29] DSTU 9116:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Polymer Modified Road Bitumen. Specification, 2022. | |
dc.relation.references | [30] SОU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017. | |
dc.relation.references | [31] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitu-men’s, modified by adhesion promoters. Specifications, 2011. | |
dc.relation.references | [32] DSTU EN 13302:2019 (National Standard of Ukraine), Bitu-men and bituminous binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus, 2020. | |
dc.relation.references | [33] DSTU EN 12591:2017 (National Standard of Ukraine), Bitu-men and bituminous binders. Specifications for Paving Grade Bitumens, 2017. | |
dc.relation.referencesen | [1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742 | |
dc.relation.referencesen | [2] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015; pp 1-463. ISBN: 0 7277 3220 X | |
dc.relation.referencesen | [3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
dc.relation.referencesen | [4] Baldino, N.; Gabriele, D.; Lupi, F.R.; Rossi, C.O.; Caputo, P.; Falvo, T. Rheological Effects On Bitumen Of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001 | |
dc.relation.referencesen | [5] Özdemir, D.K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 1-8. https://doi.org/10.1016/j.conbuildmat.2021.124041 | |
dc.relation.referencesen | [6] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect Of Silane Coupling Agent On Improving The Adhesive Properties Between Asphalt Binder And Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.referencesen | [7] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.referencesen | [8] Bagshaw, S.A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802 | |
dc.relation.referencesen | [9] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151 | |
dc.relation.referencesen | [10] Mamuye, Y.; Liao, M.C.; Do, N.D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and Their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.127304 | |
dc.relation.referencesen | [11] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Dem-chuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.referencesen | [12] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
dc.relation.referencesen | [13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Mod-ified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.referencesen | [14] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.referencesen | [15] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206. | |
dc.relation.referencesen | [16] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1 | |
dc.relation.referencesen | [17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pave-ment. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.referencesen | [18] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.referencesen | [19] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
dc.relation.referencesen | [20] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.referencesen | [22] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.referencesen | [23] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.referencesen | [24] Gunka, V.; Hrynchuk, Y.; Demchuk, Y.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy V.; Astakhova O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211 | |
dc.relation.referencesen | [25] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.referencesen | [26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.referencesen | [27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.referencesen | [28] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019. | |
dc.relation.referencesen | [29] DSTU 9116:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Polymer Modified Road Bitumen. Specification, 2022. | |
dc.relation.referencesen | [30] SOU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017. | |
dc.relation.referencesen | [31] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitu-men’s, modified by adhesion promoters. Specifications, 2011. | |
dc.relation.referencesen | [32] DSTU EN 13302:2019 (National Standard of Ukraine), Bitu-men and bituminous binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus, 2020. | |
dc.relation.referencesen | [33] DSTU EN 12591:2017 (National Standard of Ukraine), Bitu-men and bituminous binders. Specifications for Paving Grade Bitumens, 2017. | |
dc.relation.uri | https://doi.org/10.3390/app9040742 | |
dc.relation.uri | https://doi.org/10.3390/ma15051774 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2012.11.001 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2021.124041 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.02.186 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2011.02.035 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2018.1468802 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2016.03.151 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.127304 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.443 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.01.142 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.01.069 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-57340-9_1 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1828154 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.03.438 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.uri | https://doi.org/10.23939/chcht17.01.211 | |
dc.relation.uri | https://doi.org/10.3390/ma15165693 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Gunka V., Donchenko M., Demchuk Yu., Drapak I., Bratychak M., 2023 | |
dc.subject | гудрон | |
dc.subject | бітум | |
dc.subject | формальдегід | |
dc.subject | хімічне модифікування | |
dc.subject | tar | |
dc.subject | bitumen | |
dc.subject | formaldehyde | |
dc.subject | chemical modification | |
dc.title | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction | |
dc.title.alternative | Одержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 8. Перспективи використання гудронів, модифікованих формальдегідом, у дорожньому будівництві | |
dc.type | Article |
Files
License bundle
1 - 1 of 1