Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine

dc.citation.epage58
dc.citation.issue93
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage48
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет ім. Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorПаляниця, Богдан
dc.contributor.authorКладочний, Богдан
dc.contributor.authorПаляниця, Оксана
dc.contributor.authorPalianytsia, Bohdan
dc.contributor.authorKladochnyi, Bohdan
dc.contributor.authorPalianytsia, Oksana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-02T09:08:42Z
dc.date.available2023-03-02T09:08:42Z
dc.date.created2021-03-12
dc.date.issued2021-03-12
dc.description.abstractМета цієї роботи – побудувати 3D моделі складових зенітної тропосферної затримки (ZTD) за даними приземних вимірів метеорологічних величин, отриманих на 100 пунктах, що майже рівномірно розташовані на території України. Методика. Суха та волога складові зенітної тропосферної затримки обчислені за формулами Saastamoinen. За отриманими результатами складено поля сухої і вологої складових тропосферної затримки, побудовано поля їхньої зміни із використанням різної кількості досліджуваних пунктів. Також з допомогою графічного редактора побудовано 3D моделі одномоментного розподілу величини сухої та вологої складових зенітної тропосферної затримки для території України. Результати. Результатом роботи є побудовані 3D моделі складових ZTD; побудовані поля зенітної тропосферної затримки для території України; виконане порівняння розподілу складових затримки для вказаної території та її зміни протягом доби. Встановлено, що суха складова набуває більшого значення на південній та центральній території України, де пункти спостережень розташовані нижче за висотою, і де є більшим атмосферний тиск, який домінує при обчисленні цієї складової. Відповідно волога складова є більшою також у південній частині України, але це зумовлено вищою відносною вологістю. У результаті ущільнення мережі до 100 пунктів отримано точніші моделі розподілу складових, що дало змогу детальніше оцінити значення тропосферної затримки для території України. Подальше ущільнення мережі для території України не спричинило очікуваного підвищення точності визначення тропосферної затримки, оскільки недостатньо рівномірним є розташування метеостанцій на території країни, і деякі значення метеорологічних величин отримані не безпосередніми вимірюваннями, а методом інтерполяції. Для отримання детальнішої моделі необхідно рівномірно ущільнювати модель пунктами з надійними метеорологічними вимірюваннями, а для контролю використовувати обчислення складових інтегруванням за даними аерологічних зондувань, проведених на окремих пунктах. Наукова новизна полягає у побудові 3D моделей складових тропосферної затримки для території України на певний момент часу. Практична значущість виконаних досліджень у тому, що вони можуть використовуватися як початковий крок для побудови просторово-часової моделі тропосферної затримки, яка відображала б просторові зміни затримки у реальному часі для певної території
dc.description.abstractThe purpose of this work is to build 3D models of components of zenith tropospheric delay (ZTD) according to the surface measurements of meteorological values obtained at 100 points, which is almost evenly distributed throughout Ukraine. Method. Saastamoinen formulas calculated dry and wet components of the zenith tropospheric delay. According to the obtained results, the fields of dry and wet components of tropospheric delay were compiled, the fields of their change were constructed using a different number of studied points. Also, with the help of a graphic editor, 3D models of the magnitude one-moment distribution of dry and wet components of the zenith tropospheric delay for the territory of Ukraine were built. Results. Built 3D models of ZTD components; constructed zenith tropospheric delay fields for the territory of Ukraine; a comparison of the distribution of delay components for the specified area and its change during the day are the results of this work. It is established that the dry component becomes more important in the southern and central territory of Ukraine, where the observation points are lower in height and where there is a higher atmospheric pressure, which dominates in the calculation of this component. Accordingly, the wet component is also higher in the southern part of Ukraine, but this is due to higher relative humidity. As a result of the compaction of the network to 100 points, more accurate models of component distribution were obtained, which allowed Ukraine to assess in more detail the value of tropospheric delay for the territory of Ukraine. Further compaction of the network for the territory of Ukraine did not lead to the expected increase in the accuracy of tropospheric delay, as the location of meteorological stations in the country is not uniform enough, and some values of meteorological magnitudes are obtained not by direct measurements but by interpolation. It is necessary to compact the model with reliable meteorological measurements evenly and to control the calculation of components by integrating according to the aerological soundings carried out at individual points to obtain a more detailed model. Scientific novelty and practical significance. The scientific novelty is to build 3D models of tropospheric delay components for the territory of Ukraine at a certain point in time. The practical significance of the performed research is that they can be used as an initial step to build a Spatio-temporal model of tropospheric delay, reflecting the spatial changes of the delay in real-time for a particular area.
dc.format.extent48-58
dc.format.pages11
dc.identifier.citationPalianytsia B. Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine / Bohdan Palianytsia, Bohdan Kladochnyi, Oksana Palianytsia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 48–58.
dc.identifier.citationenPalianytsia B. Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine / Bohdan Palianytsia, Bohdan Kladochnyi, Oksana Palianytsia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 48–58.
dc.identifier.doidoi.org/10.23939/istcgcap2021.93.048
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57468
dc.language.isoen
dc.publisherВидавництво Національного університету “Львівська політехніка”
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 93, 2021
dc.relation.ispartofGeodesy, cartography and aerial photography, 93, 2021
dc.relation.referencesAshraf, E. L., AbouAly, N., Sharaf, M., Zahra, H., &
dc.relation.referencesDarrag, M. (2016). Tropospheric wet delay estimation
dc.relation.referencesusing GNSS: Case study of a permanent network in
dc.relation.referencesEgypt. NRIAG Journal of Astronomy and Geophysics, 5(1), 76-86. https://doi.org/10.1016/j.nrjag.2016.01.002.
dc.relation.referencesAigong X., Zongqiu X., Maorong G., Xinchao X.,
dc.relation.referencesHuizhong Z., & Xin S. (2013). Estimating Zenith
dc.relation.referencesTropospheric Delays from BeiDou Navigation
dc.relation.referencesSatellite System Observations Sensors, 13(4), 4514–4526; https://doi.org/10.3390/s130404514.
dc.relation.referencesAbdel-Ghany M. S., A. Mahrous, E. A. Farid, Robaa S. M.
dc.relation.references& Abdel-Wahab M. M. (2019). Zenith Tropospheric
dc.relation.referencesDelay Corrections of GNSS Satellite Signal. Current
dc.relation.referencesScience International, 8, 230–235.
dc.relation.referencesBevis, M., Businger, S., Herring, T. A., Rocken, C.,
dc.relation.referencesAnthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor
dc.relation.referencesusing the Global Positioning System. Journal of
dc.relation.referencesGeophysical Research: Atmospheres, 97(D14), 15787–15801.
dc.relation.referencesJunsheng D., & Junping, C. (2020). Assessment of
dc.relation.referencesEmpirical Troposphere Model GPT3 Based on NGL’s
dc.relation.referencesGlobal Troposphere Products. Sensors, 20(13), 3631;
dc.relation.referenceshttps://doi.org/10.3390/s20133631.
dc.relation.referencesKablak, N. I. (2011). Monitoring of the besieged water
dc.relation.referencesvapor on the basis of the processing of GNSS
dc.relation.referencesdata. Space Science and Technology. 17, 4, 65–73.
dc.relation.referenceshttps://doi.org/10.15407/knit2011.04.065.
dc.relation.referencesKablak, N., Reity, O., Ştefan, O., Rădulescu, A. T., &
dc.relation.referencesRădulescu, C. (2016). The remote monitoring of
dc.relation.referencesEarth’s atmosphere based on operative processing
dc.relation.referencesGNSS data in the UA-EUPOS/ZAKPOS network of
dc.relation.referencesactive reference stations. Sustainability, 8(4), 391.
dc.relation.referencesDOI:10.3390/su8040391.
dc.relation.referencesKladochnyi, B., & Palianytsia, B. (2018). The research of
dc.relation.referenceschange in the components of zenith tropospheric delay.
dc.relation.referencesGeoTerrace. (in Ukrainian).
dc.relation.referencesMendes, V. B. (1999). Modeling the neutral-atmosphere
dc.relation.referencespropagation delay in radiometric space techniques.
dc.relation.referencesPh.D. dissertation, Department of Geodesy and
dc.relation.referencesGeomatics Engineering Technical Report № 199,
dc.relation.referencesUniversity of New Brunwick, Fredericton, New
dc.relation.referencesBrunswick, Canada, 353 p.
dc.relation.referencesNational Climatic Data Center, Asheville, North Carolina,
dc.relation.referencesUSA. https://www.ncdc.noaa.gov/.
dc.relation.referencesPaziak, M. (2019). Determination of precipitable water
dc.relation.referencesvapour, from the data of aerological ang GNSS
dc.relation.referencesmeasurements at europpean and tropical stations.
dc.relation.referencesGeodesy, Cartography and Aerial Photography, 89, 20–28.
dc.relation.referencesPalianytsia, B. (2001). On determination of the tropospheric delay at calculation of GPS-measurements.
dc.relation.referencesModern achievements of geodetic science and
dc.relation.referencesproduction. Lviv: Liga-Press, 48–52. (in Ukrainian).
dc.relation.referencesPalianytsia, B., Oliynyk, V., & Boyko, V. (2016). The
dc.relation.referencesresearch of change of zenith troposperic dealay’s
dc.relation.referencescomponents. Geodesy, Cartography and Aerial
dc.relation.referencesPhotography, 83, 13–20.
dc.relation.referencesPalianytsia, B. B., Kladochnyi, B. V., & Palianytsia, O. B.
dc.relation.references(2020a). Research of short-periodic changes in the
dc.relation.referencescomponents of zenith throposphere delay. Geodesy,
dc.relation.referencesCartography and Aerial Photography, 91, 11–19.
dc.relation.referencesPalianytsia, B. B., Kladochnyi, B. V., & Palianytsia, Kh.
dc.relation.referencesB. (2020b). Research of oscillations in the components
dc.relation.referencesof zenith tropospheric delay during the year in Ukraine. Geodesy, Cartography and Aerial Photography, 92, 5–14.
dc.relation.referencesRaspisaniye Pogodi Ltd., St. Petersburg, Russia,
dc.relation.referenceshttps://rp5.ua/.
dc.relation.referencesSaastamoinen, J. (1972). Atmospheric correction for the
dc.relation.referencestroposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247–251.
dc.relation.referencesYang, Y. F., Chen, X. P., Yao, M. H., Zhou, C. L., &
dc.relation.referencesLiao, C. M. (2020). Research On Zenith Tropospheric
dc.relation.referencesDelay Modeling Of Regional Cors Network, Int. Arch.
dc.relation.referencesPhotogramm. Remote Sens. Spatial Inf. Sci., XLII3/W10, 1197–1200.
dc.relation.referencesZablotsky, F. D. (2000). On the choice of models for
dc.relation.referencesdetermining the components of zenith tropospheric
dc.relation.referencesdelay in geodynamic research. Geodynamics. Lviv, 1
dc.relation.references(3), 1–7.
dc.relation.referencesZablotsky, F., & Palyanytsya, B. (2004). Modified models
dc.relation.referencesfor determining the dry component of zenith
dc.relation.referencestropospheric delay in the South-Western region
dc.relation.referencesof Ukraine. Geodesy, cartography and aerial
dc.relation.referencesphotography, 65, 51–56.
dc.relation.referencesZablotsky, F. D, Dovgan, N. R, & Palyanytsya, B. B.
dc.relation.references(2006). Peculiarities of tropospheric delay formation in
dc.relation.referencesAntarctica (according to McMurdo station. Modern
dc.relation.referencesachievements of geodetic science and production. Lviv:
dc.relation.referencesLiga-Press, 115–119. (in Ukrainian).
dc.relation.referencesZablotskyi, F., Gresko, Ju., & Palanytsa, B. (2017).
dc.relation.referencesMonitoring of water vapor content by radio sounding
dc.relation.referencesdata at the Kyiv aerological station and by GNSS
dc.relation.referencesobservation data at the GLSV station. Geodesy,
dc.relation.referencesCartography and Aerial Photography, 85, 13–17.
dc.relation.referencesenAshraf, E. L., AbouAly, N., Sharaf, M., Zahra, H., &
dc.relation.referencesenDarrag, M. (2016). Tropospheric wet delay estimation
dc.relation.referencesenusing GNSS: Case study of a permanent network in
dc.relation.referencesenEgypt. NRIAG Journal of Astronomy and Geophysics, 5(1), 76-86. https://doi.org/10.1016/j.nrjag.2016.01.002.
dc.relation.referencesenAigong X., Zongqiu X., Maorong G., Xinchao X.,
dc.relation.referencesenHuizhong Z., & Xin S. (2013). Estimating Zenith
dc.relation.referencesenTropospheric Delays from BeiDou Navigation
dc.relation.referencesenSatellite System Observations Sensors, 13(4), 4514–4526; https://doi.org/10.3390/s130404514.
dc.relation.referencesenAbdel-Ghany M. S., A. Mahrous, E. A. Farid, Robaa S. M.
dc.relation.referencesen& Abdel-Wahab M. M. (2019). Zenith Tropospheric
dc.relation.referencesenDelay Corrections of GNSS Satellite Signal. Current
dc.relation.referencesenScience International, 8, 230–235.
dc.relation.referencesenBevis, M., Businger, S., Herring, T. A., Rocken, C.,
dc.relation.referencesenAnthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor
dc.relation.referencesenusing the Global Positioning System. Journal of
dc.relation.referencesenGeophysical Research: Atmospheres, 97(D14), 15787–15801.
dc.relation.referencesenJunsheng D., & Junping, C. (2020). Assessment of
dc.relation.referencesenEmpirical Troposphere Model GPT3 Based on NGL’s
dc.relation.referencesenGlobal Troposphere Products. Sensors, 20(13), 3631;
dc.relation.referencesenhttps://doi.org/10.3390/s20133631.
dc.relation.referencesenKablak, N. I. (2011). Monitoring of the besieged water
dc.relation.referencesenvapor on the basis of the processing of GNSS
dc.relation.referencesendata. Space Science and Technology. 17, 4, 65–73.
dc.relation.referencesenhttps://doi.org/10.15407/knit2011.04.065.
dc.relation.referencesenKablak, N., Reity, O., Ştefan, O., Rădulescu, A. T., &
dc.relation.referencesenRădulescu, C. (2016). The remote monitoring of
dc.relation.referencesenEarth’s atmosphere based on operative processing
dc.relation.referencesenGNSS data in the UA-EUPOS/ZAKPOS network of
dc.relation.referencesenactive reference stations. Sustainability, 8(4), 391.
dc.relation.referencesenDOI:10.3390/su8040391.
dc.relation.referencesenKladochnyi, B., & Palianytsia, B. (2018). The research of
dc.relation.referencesenchange in the components of zenith tropospheric delay.
dc.relation.referencesenGeoTerrace. (in Ukrainian).
dc.relation.referencesenMendes, V. B. (1999). Modeling the neutral-atmosphere
dc.relation.referencesenpropagation delay in radiometric space techniques.
dc.relation.referencesenPh.D. dissertation, Department of Geodesy and
dc.relation.referencesenGeomatics Engineering Technical Report No 199,
dc.relation.referencesenUniversity of New Brunwick, Fredericton, New
dc.relation.referencesenBrunswick, Canada, 353 p.
dc.relation.referencesenNational Climatic Data Center, Asheville, North Carolina,
dc.relation.referencesenUSA. https://www.ncdc.noaa.gov/.
dc.relation.referencesenPaziak, M. (2019). Determination of precipitable water
dc.relation.referencesenvapour, from the data of aerological ang GNSS
dc.relation.referencesenmeasurements at europpean and tropical stations.
dc.relation.referencesenGeodesy, Cartography and Aerial Photography, 89, 20–28.
dc.relation.referencesenPalianytsia, B. (2001). On determination of the tropospheric delay at calculation of GPS-measurements.
dc.relation.referencesenModern achievements of geodetic science and
dc.relation.referencesenproduction. Lviv: Liga-Press, 48–52. (in Ukrainian).
dc.relation.referencesenPalianytsia, B., Oliynyk, V., & Boyko, V. (2016). The
dc.relation.referencesenresearch of change of zenith troposperic dealay’s
dc.relation.referencesencomponents. Geodesy, Cartography and Aerial
dc.relation.referencesenPhotography, 83, 13–20.
dc.relation.referencesenPalianytsia, B. B., Kladochnyi, B. V., & Palianytsia, O. B.
dc.relation.referencesen(2020a). Research of short-periodic changes in the
dc.relation.referencesencomponents of zenith throposphere delay. Geodesy,
dc.relation.referencesenCartography and Aerial Photography, 91, 11–19.
dc.relation.referencesenPalianytsia, B. B., Kladochnyi, B. V., & Palianytsia, Kh.
dc.relation.referencesenB. (2020b). Research of oscillations in the components
dc.relation.referencesenof zenith tropospheric delay during the year in Ukraine. Geodesy, Cartography and Aerial Photography, 92, 5–14.
dc.relation.referencesenRaspisaniye Pogodi Ltd., St. Petersburg, Russia,
dc.relation.referencesenhttps://rp5.ua/.
dc.relation.referencesenSaastamoinen, J. (1972). Atmospheric correction for the
dc.relation.referencesentroposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247–251.
dc.relation.referencesenYang, Y. F., Chen, X. P., Yao, M. H., Zhou, C. L., &
dc.relation.referencesenLiao, C. M. (2020). Research On Zenith Tropospheric
dc.relation.referencesenDelay Modeling Of Regional Cors Network, Int. Arch.
dc.relation.referencesenPhotogramm. Remote Sens. Spatial Inf. Sci., XLII3/W10, 1197–1200.
dc.relation.referencesenZablotsky, F. D. (2000). On the choice of models for
dc.relation.referencesendetermining the components of zenith tropospheric
dc.relation.referencesendelay in geodynamic research. Geodynamics. Lviv, 1
dc.relation.referencesen(3), 1–7.
dc.relation.referencesenZablotsky, F., & Palyanytsya, B. (2004). Modified models
dc.relation.referencesenfor determining the dry component of zenith
dc.relation.referencesentropospheric delay in the South-Western region
dc.relation.referencesenof Ukraine. Geodesy, cartography and aerial
dc.relation.referencesenphotography, 65, 51–56.
dc.relation.referencesenZablotsky, F. D, Dovgan, N. R, & Palyanytsya, B. B.
dc.relation.referencesen(2006). Peculiarities of tropospheric delay formation in
dc.relation.referencesenAntarctica (according to McMurdo station. Modern
dc.relation.referencesenachievements of geodetic science and production. Lviv:
dc.relation.referencesenLiga-Press, 115–119. (in Ukrainian).
dc.relation.referencesenZablotskyi, F., Gresko, Ju., & Palanytsa, B. (2017).
dc.relation.referencesenMonitoring of water vapor content by radio sounding
dc.relation.referencesendata at the Kyiv aerological station and by GNSS
dc.relation.referencesenobservation data at the GLSV station. Geodesy,
dc.relation.referencesenCartography and Aerial Photography, 85, 13–17.
dc.relation.urihttps://doi.org/10.1016/j.nrjag.2016.01.002
dc.relation.urihttps://doi.org/10.3390/s130404514
dc.relation.urihttps://doi.org/10.3390/s20133631
dc.relation.urihttps://doi.org/10.15407/knit2011.04.065
dc.relation.urihttps://www.ncdc.noaa.gov/
dc.relation.urihttps://rp5.ua/
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectтропосферна затримка
dc.subjectвплив тропосфери на супутникові виміри
dc.subjectметоди визначення тропосферної затримки
dc.subjectвизначення складових тропосферної затримки
dc.subjectГНСС-виміри
dc.subjecttropospheric delay
dc.subjectmethods for determining tropospheric delay
dc.subjectdetermination of tropospheric delay components
dc.subjecttropospheric delay modeling
dc.subjectGNSS observations
dc.subject.udc528.18
dc.subject.udc629.783
dc.titleConstruction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine
dc.title.alternativeПобудова 3D моделей розподілу складових зенітної тропосферної затримки для території України
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021n93_Palianytsia_B-Construction_of_3d_models_48-58.pdf
Size:
728.34 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021n93_Palianytsia_B-Construction_of_3d_models_48-58__COVER.png
Size:
547.24 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: