Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine
dc.citation.epage | 58 | |
dc.citation.issue | 93 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання | |
dc.citation.spage | 48 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Паляниця, Богдан | |
dc.contributor.author | Кладочний, Богдан | |
dc.contributor.author | Паляниця, Оксана | |
dc.contributor.author | Palianytsia, Bohdan | |
dc.contributor.author | Kladochnyi, Bohdan | |
dc.contributor.author | Palianytsia, Oksana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-02T09:08:42Z | |
dc.date.available | 2023-03-02T09:08:42Z | |
dc.date.created | 2021-03-12 | |
dc.date.issued | 2021-03-12 | |
dc.description.abstract | Мета цієї роботи – побудувати 3D моделі складових зенітної тропосферної затримки (ZTD) за даними приземних вимірів метеорологічних величин, отриманих на 100 пунктах, що майже рівномірно розташовані на території України. Методика. Суха та волога складові зенітної тропосферної затримки обчислені за формулами Saastamoinen. За отриманими результатами складено поля сухої і вологої складових тропосферної затримки, побудовано поля їхньої зміни із використанням різної кількості досліджуваних пунктів. Також з допомогою графічного редактора побудовано 3D моделі одномоментного розподілу величини сухої та вологої складових зенітної тропосферної затримки для території України. Результати. Результатом роботи є побудовані 3D моделі складових ZTD; побудовані поля зенітної тропосферної затримки для території України; виконане порівняння розподілу складових затримки для вказаної території та її зміни протягом доби. Встановлено, що суха складова набуває більшого значення на південній та центральній території України, де пункти спостережень розташовані нижче за висотою, і де є більшим атмосферний тиск, який домінує при обчисленні цієї складової. Відповідно волога складова є більшою також у південній частині України, але це зумовлено вищою відносною вологістю. У результаті ущільнення мережі до 100 пунктів отримано точніші моделі розподілу складових, що дало змогу детальніше оцінити значення тропосферної затримки для території України. Подальше ущільнення мережі для території України не спричинило очікуваного підвищення точності визначення тропосферної затримки, оскільки недостатньо рівномірним є розташування метеостанцій на території країни, і деякі значення метеорологічних величин отримані не безпосередніми вимірюваннями, а методом інтерполяції. Для отримання детальнішої моделі необхідно рівномірно ущільнювати модель пунктами з надійними метеорологічними вимірюваннями, а для контролю використовувати обчислення складових інтегруванням за даними аерологічних зондувань, проведених на окремих пунктах. Наукова новизна полягає у побудові 3D моделей складових тропосферної затримки для території України на певний момент часу. Практична значущість виконаних досліджень у тому, що вони можуть використовуватися як початковий крок для побудови просторово-часової моделі тропосферної затримки, яка відображала б просторові зміни затримки у реальному часі для певної території | |
dc.description.abstract | The purpose of this work is to build 3D models of components of zenith tropospheric delay (ZTD) according to the surface measurements of meteorological values obtained at 100 points, which is almost evenly distributed throughout Ukraine. Method. Saastamoinen formulas calculated dry and wet components of the zenith tropospheric delay. According to the obtained results, the fields of dry and wet components of tropospheric delay were compiled, the fields of their change were constructed using a different number of studied points. Also, with the help of a graphic editor, 3D models of the magnitude one-moment distribution of dry and wet components of the zenith tropospheric delay for the territory of Ukraine were built. Results. Built 3D models of ZTD components; constructed zenith tropospheric delay fields for the territory of Ukraine; a comparison of the distribution of delay components for the specified area and its change during the day are the results of this work. It is established that the dry component becomes more important in the southern and central territory of Ukraine, where the observation points are lower in height and where there is a higher atmospheric pressure, which dominates in the calculation of this component. Accordingly, the wet component is also higher in the southern part of Ukraine, but this is due to higher relative humidity. As a result of the compaction of the network to 100 points, more accurate models of component distribution were obtained, which allowed Ukraine to assess in more detail the value of tropospheric delay for the territory of Ukraine. Further compaction of the network for the territory of Ukraine did not lead to the expected increase in the accuracy of tropospheric delay, as the location of meteorological stations in the country is not uniform enough, and some values of meteorological magnitudes are obtained not by direct measurements but by interpolation. It is necessary to compact the model with reliable meteorological measurements evenly and to control the calculation of components by integrating according to the aerological soundings carried out at individual points to obtain a more detailed model. Scientific novelty and practical significance. The scientific novelty is to build 3D models of tropospheric delay components for the territory of Ukraine at a certain point in time. The practical significance of the performed research is that they can be used as an initial step to build a Spatio-temporal model of tropospheric delay, reflecting the spatial changes of the delay in real-time for a particular area. | |
dc.format.extent | 48-58 | |
dc.format.pages | 11 | |
dc.identifier.citation | Palianytsia B. Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine / Bohdan Palianytsia, Bohdan Kladochnyi, Oksana Palianytsia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 48–58. | |
dc.identifier.citationen | Palianytsia B. Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine / Bohdan Palianytsia, Bohdan Kladochnyi, Oksana Palianytsia // Geodesy, cartography and aerial photography. — Lviv : Lviv Politechnic Publishing House, 2021. — No 93. — P. 48–58. | |
dc.identifier.doi | doi.org/10.23939/istcgcap2021.93.048 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57468 | |
dc.language.iso | en | |
dc.publisher | Видавництво Національного університету “Львівська політехніка” | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання, 93, 2021 | |
dc.relation.ispartof | Geodesy, cartography and aerial photography, 93, 2021 | |
dc.relation.references | Ashraf, E. L., AbouAly, N., Sharaf, M., Zahra, H., & | |
dc.relation.references | Darrag, M. (2016). Tropospheric wet delay estimation | |
dc.relation.references | using GNSS: Case study of a permanent network in | |
dc.relation.references | Egypt. NRIAG Journal of Astronomy and Geophysics, 5(1), 76-86. https://doi.org/10.1016/j.nrjag.2016.01.002. | |
dc.relation.references | Aigong X., Zongqiu X., Maorong G., Xinchao X., | |
dc.relation.references | Huizhong Z., & Xin S. (2013). Estimating Zenith | |
dc.relation.references | Tropospheric Delays from BeiDou Navigation | |
dc.relation.references | Satellite System Observations Sensors, 13(4), 4514–4526; https://doi.org/10.3390/s130404514. | |
dc.relation.references | Abdel-Ghany M. S., A. Mahrous, E. A. Farid, Robaa S. M. | |
dc.relation.references | & Abdel-Wahab M. M. (2019). Zenith Tropospheric | |
dc.relation.references | Delay Corrections of GNSS Satellite Signal. Current | |
dc.relation.references | Science International, 8, 230–235. | |
dc.relation.references | Bevis, M., Businger, S., Herring, T. A., Rocken, C., | |
dc.relation.references | Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor | |
dc.relation.references | using the Global Positioning System. Journal of | |
dc.relation.references | Geophysical Research: Atmospheres, 97(D14), 15787–15801. | |
dc.relation.references | Junsheng D., & Junping, C. (2020). Assessment of | |
dc.relation.references | Empirical Troposphere Model GPT3 Based on NGL’s | |
dc.relation.references | Global Troposphere Products. Sensors, 20(13), 3631; | |
dc.relation.references | https://doi.org/10.3390/s20133631. | |
dc.relation.references | Kablak, N. I. (2011). Monitoring of the besieged water | |
dc.relation.references | vapor on the basis of the processing of GNSS | |
dc.relation.references | data. Space Science and Technology. 17, 4, 65–73. | |
dc.relation.references | https://doi.org/10.15407/knit2011.04.065. | |
dc.relation.references | Kablak, N., Reity, O., Ştefan, O., Rădulescu, A. T., & | |
dc.relation.references | Rădulescu, C. (2016). The remote monitoring of | |
dc.relation.references | Earth’s atmosphere based on operative processing | |
dc.relation.references | GNSS data in the UA-EUPOS/ZAKPOS network of | |
dc.relation.references | active reference stations. Sustainability, 8(4), 391. | |
dc.relation.references | DOI:10.3390/su8040391. | |
dc.relation.references | Kladochnyi, B., & Palianytsia, B. (2018). The research of | |
dc.relation.references | change in the components of zenith tropospheric delay. | |
dc.relation.references | GeoTerrace. (in Ukrainian). | |
dc.relation.references | Mendes, V. B. (1999). Modeling the neutral-atmosphere | |
dc.relation.references | propagation delay in radiometric space techniques. | |
dc.relation.references | Ph.D. dissertation, Department of Geodesy and | |
dc.relation.references | Geomatics Engineering Technical Report № 199, | |
dc.relation.references | University of New Brunwick, Fredericton, New | |
dc.relation.references | Brunswick, Canada, 353 p. | |
dc.relation.references | National Climatic Data Center, Asheville, North Carolina, | |
dc.relation.references | USA. https://www.ncdc.noaa.gov/. | |
dc.relation.references | Paziak, M. (2019). Determination of precipitable water | |
dc.relation.references | vapour, from the data of aerological ang GNSS | |
dc.relation.references | measurements at europpean and tropical stations. | |
dc.relation.references | Geodesy, Cartography and Aerial Photography, 89, 20–28. | |
dc.relation.references | Palianytsia, B. (2001). On determination of the tropospheric delay at calculation of GPS-measurements. | |
dc.relation.references | Modern achievements of geodetic science and | |
dc.relation.references | production. Lviv: Liga-Press, 48–52. (in Ukrainian). | |
dc.relation.references | Palianytsia, B., Oliynyk, V., & Boyko, V. (2016). The | |
dc.relation.references | research of change of zenith troposperic dealay’s | |
dc.relation.references | components. Geodesy, Cartography and Aerial | |
dc.relation.references | Photography, 83, 13–20. | |
dc.relation.references | Palianytsia, B. B., Kladochnyi, B. V., & Palianytsia, O. B. | |
dc.relation.references | (2020a). Research of short-periodic changes in the | |
dc.relation.references | components of zenith throposphere delay. Geodesy, | |
dc.relation.references | Cartography and Aerial Photography, 91, 11–19. | |
dc.relation.references | Palianytsia, B. B., Kladochnyi, B. V., & Palianytsia, Kh. | |
dc.relation.references | B. (2020b). Research of oscillations in the components | |
dc.relation.references | of zenith tropospheric delay during the year in Ukraine. Geodesy, Cartography and Aerial Photography, 92, 5–14. | |
dc.relation.references | Raspisaniye Pogodi Ltd., St. Petersburg, Russia, | |
dc.relation.references | https://rp5.ua/. | |
dc.relation.references | Saastamoinen, J. (1972). Atmospheric correction for the | |
dc.relation.references | troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247–251. | |
dc.relation.references | Yang, Y. F., Chen, X. P., Yao, M. H., Zhou, C. L., & | |
dc.relation.references | Liao, C. M. (2020). Research On Zenith Tropospheric | |
dc.relation.references | Delay Modeling Of Regional Cors Network, Int. Arch. | |
dc.relation.references | Photogramm. Remote Sens. Spatial Inf. Sci., XLII3/W10, 1197–1200. | |
dc.relation.references | Zablotsky, F. D. (2000). On the choice of models for | |
dc.relation.references | determining the components of zenith tropospheric | |
dc.relation.references | delay in geodynamic research. Geodynamics. Lviv, 1 | |
dc.relation.references | (3), 1–7. | |
dc.relation.references | Zablotsky, F., & Palyanytsya, B. (2004). Modified models | |
dc.relation.references | for determining the dry component of zenith | |
dc.relation.references | tropospheric delay in the South-Western region | |
dc.relation.references | of Ukraine. Geodesy, cartography and aerial | |
dc.relation.references | photography, 65, 51–56. | |
dc.relation.references | Zablotsky, F. D, Dovgan, N. R, & Palyanytsya, B. B. | |
dc.relation.references | (2006). Peculiarities of tropospheric delay formation in | |
dc.relation.references | Antarctica (according to McMurdo station. Modern | |
dc.relation.references | achievements of geodetic science and production. Lviv: | |
dc.relation.references | Liga-Press, 115–119. (in Ukrainian). | |
dc.relation.references | Zablotskyi, F., Gresko, Ju., & Palanytsa, B. (2017). | |
dc.relation.references | Monitoring of water vapor content by radio sounding | |
dc.relation.references | data at the Kyiv aerological station and by GNSS | |
dc.relation.references | observation data at the GLSV station. Geodesy, | |
dc.relation.references | Cartography and Aerial Photography, 85, 13–17. | |
dc.relation.referencesen | Ashraf, E. L., AbouAly, N., Sharaf, M., Zahra, H., & | |
dc.relation.referencesen | Darrag, M. (2016). Tropospheric wet delay estimation | |
dc.relation.referencesen | using GNSS: Case study of a permanent network in | |
dc.relation.referencesen | Egypt. NRIAG Journal of Astronomy and Geophysics, 5(1), 76-86. https://doi.org/10.1016/j.nrjag.2016.01.002. | |
dc.relation.referencesen | Aigong X., Zongqiu X., Maorong G., Xinchao X., | |
dc.relation.referencesen | Huizhong Z., & Xin S. (2013). Estimating Zenith | |
dc.relation.referencesen | Tropospheric Delays from BeiDou Navigation | |
dc.relation.referencesen | Satellite System Observations Sensors, 13(4), 4514–4526; https://doi.org/10.3390/s130404514. | |
dc.relation.referencesen | Abdel-Ghany M. S., A. Mahrous, E. A. Farid, Robaa S. M. | |
dc.relation.referencesen | & Abdel-Wahab M. M. (2019). Zenith Tropospheric | |
dc.relation.referencesen | Delay Corrections of GNSS Satellite Signal. Current | |
dc.relation.referencesen | Science International, 8, 230–235. | |
dc.relation.referencesen | Bevis, M., Businger, S., Herring, T. A., Rocken, C., | |
dc.relation.referencesen | Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor | |
dc.relation.referencesen | using the Global Positioning System. Journal of | |
dc.relation.referencesen | Geophysical Research: Atmospheres, 97(D14), 15787–15801. | |
dc.relation.referencesen | Junsheng D., & Junping, C. (2020). Assessment of | |
dc.relation.referencesen | Empirical Troposphere Model GPT3 Based on NGL’s | |
dc.relation.referencesen | Global Troposphere Products. Sensors, 20(13), 3631; | |
dc.relation.referencesen | https://doi.org/10.3390/s20133631. | |
dc.relation.referencesen | Kablak, N. I. (2011). Monitoring of the besieged water | |
dc.relation.referencesen | vapor on the basis of the processing of GNSS | |
dc.relation.referencesen | data. Space Science and Technology. 17, 4, 65–73. | |
dc.relation.referencesen | https://doi.org/10.15407/knit2011.04.065. | |
dc.relation.referencesen | Kablak, N., Reity, O., Ştefan, O., Rădulescu, A. T., & | |
dc.relation.referencesen | Rădulescu, C. (2016). The remote monitoring of | |
dc.relation.referencesen | Earth’s atmosphere based on operative processing | |
dc.relation.referencesen | GNSS data in the UA-EUPOS/ZAKPOS network of | |
dc.relation.referencesen | active reference stations. Sustainability, 8(4), 391. | |
dc.relation.referencesen | DOI:10.3390/su8040391. | |
dc.relation.referencesen | Kladochnyi, B., & Palianytsia, B. (2018). The research of | |
dc.relation.referencesen | change in the components of zenith tropospheric delay. | |
dc.relation.referencesen | GeoTerrace. (in Ukrainian). | |
dc.relation.referencesen | Mendes, V. B. (1999). Modeling the neutral-atmosphere | |
dc.relation.referencesen | propagation delay in radiometric space techniques. | |
dc.relation.referencesen | Ph.D. dissertation, Department of Geodesy and | |
dc.relation.referencesen | Geomatics Engineering Technical Report No 199, | |
dc.relation.referencesen | University of New Brunwick, Fredericton, New | |
dc.relation.referencesen | Brunswick, Canada, 353 p. | |
dc.relation.referencesen | National Climatic Data Center, Asheville, North Carolina, | |
dc.relation.referencesen | USA. https://www.ncdc.noaa.gov/. | |
dc.relation.referencesen | Paziak, M. (2019). Determination of precipitable water | |
dc.relation.referencesen | vapour, from the data of aerological ang GNSS | |
dc.relation.referencesen | measurements at europpean and tropical stations. | |
dc.relation.referencesen | Geodesy, Cartography and Aerial Photography, 89, 20–28. | |
dc.relation.referencesen | Palianytsia, B. (2001). On determination of the tropospheric delay at calculation of GPS-measurements. | |
dc.relation.referencesen | Modern achievements of geodetic science and | |
dc.relation.referencesen | production. Lviv: Liga-Press, 48–52. (in Ukrainian). | |
dc.relation.referencesen | Palianytsia, B., Oliynyk, V., & Boyko, V. (2016). The | |
dc.relation.referencesen | research of change of zenith troposperic dealay’s | |
dc.relation.referencesen | components. Geodesy, Cartography and Aerial | |
dc.relation.referencesen | Photography, 83, 13–20. | |
dc.relation.referencesen | Palianytsia, B. B., Kladochnyi, B. V., & Palianytsia, O. B. | |
dc.relation.referencesen | (2020a). Research of short-periodic changes in the | |
dc.relation.referencesen | components of zenith throposphere delay. Geodesy, | |
dc.relation.referencesen | Cartography and Aerial Photography, 91, 11–19. | |
dc.relation.referencesen | Palianytsia, B. B., Kladochnyi, B. V., & Palianytsia, Kh. | |
dc.relation.referencesen | B. (2020b). Research of oscillations in the components | |
dc.relation.referencesen | of zenith tropospheric delay during the year in Ukraine. Geodesy, Cartography and Aerial Photography, 92, 5–14. | |
dc.relation.referencesen | Raspisaniye Pogodi Ltd., St. Petersburg, Russia, | |
dc.relation.referencesen | https://rp5.ua/. | |
dc.relation.referencesen | Saastamoinen, J. (1972). Atmospheric correction for the | |
dc.relation.referencesen | troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15, 247–251. | |
dc.relation.referencesen | Yang, Y. F., Chen, X. P., Yao, M. H., Zhou, C. L., & | |
dc.relation.referencesen | Liao, C. M. (2020). Research On Zenith Tropospheric | |
dc.relation.referencesen | Delay Modeling Of Regional Cors Network, Int. Arch. | |
dc.relation.referencesen | Photogramm. Remote Sens. Spatial Inf. Sci., XLII3/W10, 1197–1200. | |
dc.relation.referencesen | Zablotsky, F. D. (2000). On the choice of models for | |
dc.relation.referencesen | determining the components of zenith tropospheric | |
dc.relation.referencesen | delay in geodynamic research. Geodynamics. Lviv, 1 | |
dc.relation.referencesen | (3), 1–7. | |
dc.relation.referencesen | Zablotsky, F., & Palyanytsya, B. (2004). Modified models | |
dc.relation.referencesen | for determining the dry component of zenith | |
dc.relation.referencesen | tropospheric delay in the South-Western region | |
dc.relation.referencesen | of Ukraine. Geodesy, cartography and aerial | |
dc.relation.referencesen | photography, 65, 51–56. | |
dc.relation.referencesen | Zablotsky, F. D, Dovgan, N. R, & Palyanytsya, B. B. | |
dc.relation.referencesen | (2006). Peculiarities of tropospheric delay formation in | |
dc.relation.referencesen | Antarctica (according to McMurdo station. Modern | |
dc.relation.referencesen | achievements of geodetic science and production. Lviv: | |
dc.relation.referencesen | Liga-Press, 115–119. (in Ukrainian). | |
dc.relation.referencesen | Zablotskyi, F., Gresko, Ju., & Palanytsa, B. (2017). | |
dc.relation.referencesen | Monitoring of water vapor content by radio sounding | |
dc.relation.referencesen | data at the Kyiv aerological station and by GNSS | |
dc.relation.referencesen | observation data at the GLSV station. Geodesy, | |
dc.relation.referencesen | Cartography and Aerial Photography, 85, 13–17. | |
dc.relation.uri | https://doi.org/10.1016/j.nrjag.2016.01.002 | |
dc.relation.uri | https://doi.org/10.3390/s130404514 | |
dc.relation.uri | https://doi.org/10.3390/s20133631 | |
dc.relation.uri | https://doi.org/10.15407/knit2011.04.065 | |
dc.relation.uri | https://www.ncdc.noaa.gov/ | |
dc.relation.uri | https://rp5.ua/ | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | тропосферна затримка | |
dc.subject | вплив тропосфери на супутникові виміри | |
dc.subject | методи визначення тропосферної затримки | |
dc.subject | визначення складових тропосферної затримки | |
dc.subject | ГНСС-виміри | |
dc.subject | tropospheric delay | |
dc.subject | methods for determining tropospheric delay | |
dc.subject | determination of tropospheric delay components | |
dc.subject | tropospheric delay modeling | |
dc.subject | GNSS observations | |
dc.subject.udc | 528.18 | |
dc.subject.udc | 629.783 | |
dc.title | Construction of 3d models of the distribution of zenithal tropospheric delay components for the territory of Ukraine | |
dc.title.alternative | Побудова 3D моделей розподілу складових зенітної тропосферної затримки для території України | |
dc.type | Article |
Files
License bundle
1 - 1 of 1