Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity
dc.citation.epage | 920 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 909 | |
dc.contributor.affiliation | Національна академія сухопутних військ імені гетьмана Петра Сагайдачного | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Hetman Petro Sahaidachnyi National Army Academy | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Сокіл, Б. І. | |
dc.contributor.author | Пукач, П. Я. | |
dc.contributor.author | Сеник, А. П. | |
dc.contributor.author | Сокіл, М. Б. | |
dc.contributor.author | Андрухів, А. І. | |
dc.contributor.author | Вовк, М. І. | |
dc.contributor.author | Sokil, B. I. | |
dc.contributor.author | Pukach, P. Ya. | |
dc.contributor.author | Senyk, A. P. | |
dc.contributor.author | Sokil, M. B. | |
dc.contributor.author | Andrukhiv, A. I. | |
dc.contributor.author | Vovk, M. I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-24T09:14:07Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Розроблено методику дослідження динамічних процесів одновимірних систем з розподіленими параметрами, які характеризуються поздовжньою складовою швидкості руху та відповідно до параметрів дією імпульсних сил. Математична модель динаміки розглядуваних систем у змінних Ейлера є крайовою задачею для загального нелінійного диференціального рівня Клейна–Гордона. Його особливістю є те, що незбурений аналог не дозволяє для побудови розв’язку використання відомих класичних методів Фур’є та Д’Аламбера. Додатковою проблемою є також нерегулярність правої частини для збуреного нелінійного аналогу. У роботі показано, що динамічний процес відповідного незбуреного руху можна трактувати як накладання прямої та відбитої хвиль різних довжин, проте однакових частот. Отримано аналітичні вирази для опису вказаних параметрів хвиль. Вони показують, що динамічний процес у таких механічних системах залежить не тільки від основних фізико-механічних параметрів та крайових умов, але й від відносної кількості руху. При цьому із збільшенням відносної кількості руху частота процесу спадає. Для опису збуреного руху використовується принцип одночастотності коливань у нелінійних системах із ізосередженими масами та розподіленими параметрами, метод регуляризації за допомогою імпульсних збурень. Узагальнено основної ідеї методу асимптотичного інтегрування системи із малою нелінійністю на розглядуваний клас динамічних систем. Отримано рівняння у стандартному вигляді для резонансного та нерезонансного випадків. Встановлено, що для першого наближення в нерезонансному випадку імпульсне збурення формує лише часткову зміну відносної кількості руху. Резонансні процеси можливі при певних зв’язках між періодом імпульсного збурення, швидкістю руху середовища та фізико-механічними властивостями тіла. Амплітуда переходу через резонанс приймає більше значення у випадку, коли точка прикладання імпульсних дій знаходиться ближче до середини тіла. Із зростанням швидкості поздовжнього руху вона досягає максимуму, а потім спадає. | |
dc.description.abstract | A methodology for researching dynamic processes of one-dimensional systems with distributed parameters that are characterized by longitudinal component of motion velocity and are under the effect of periodic impulse forces has been developed. The boundary problem for the generalized non-linear differential Klein–Gordon equation is the mathematical model of dynamics of the systems under study in Euler variables. Its specific feature is that the unexcited analogue does not allow applying the known classical Fourier and D'Alembert methods for building a solution. Non-regularity of the right part for the excited non-linear analogue is another problem. This study shows that the dynamic process of the respective unexcited motion can be treated as overlapping of the direct and reflected waves of different lengths but equal frequencies. Analytical dependencies have been obtained for describing the aforesaid parameters of the waves. They show that the dynamic process in such mechanical systems depends not only on their main physical and mechanical parameters and boundary conditions, but also on the longitudinal motion velocity (relative momentum). As relative momentum increases, the frequency of the process decreases. To describe excited motion, we use the principle of single frequency of oscillations in non-linear systems with concentrated masses and distributed parameters as well as regularization of periodic impulse excitations. The main idea of asymptotic integration of systems with small non-linearity into the class of dynamic systems under study has been generalized. A standard equation for the resonance and non-resonance cases has been obtained. It has been established that for the first approximation, in the non-resonance case, impulse excitation affects only the partial change of the form of oscillations. Resonance processes are possible at a specific relation between the impulse excitation period, the motion velocity of the medium, and physical-mechanical features of the body. The amplitude of transition through resonance becomes higher when impulse actions are applied closer to the middle of the body. As the longitudinal motion velocity increases, it initially increases and then decreases. | |
dc.format.extent | 909-920 | |
dc.format.pages | 12 | |
dc.identifier.citation | Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity / B. I. Sokil, P. Ya. Pukach, A. P. Senyk, M. B. Sokil, A. I. Andrukhiv, M. I. Vovk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 909–920. | |
dc.identifier.citationen | Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity / B. I. Sokil, P. Ya. Pukach, A. P. Senyk, M. B. Sokil, A. I. Andrukhiv, M. I. Vovk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 909–920. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.04.909 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64228 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 4 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (9), 2022 | |
dc.relation.references | [1] Timoshenko S., Young D. H. Engineering Mechanics. New York, McGraw-Hill (2010). | |
dc.relation.references | [2] Goroshko O. A., Kiba S. P. On natural and accompanying oscillations of an elastic structure with a moving load. Applied Mechanics. 18 (1), 118–121 (1972), (in Russian). | |
dc.relation.references | [3] Dotsenko P. D. On the equations of motion of one-dimensional systems carrying a mobile distributed load. Mashinovedenie. 3, 31–37 (1979), (in Russian). | |
dc.relation.references | [4] Mout L. On nonlinear oscillations of a string moving in the longitudinal direction. Proceedings of the American Society of Mechanical Engineers. In the book “Applied Mechanics”. Moscow, Mir (1969), (in Russian). | |
dc.relation.references | [5] Tian–Gui L., Jia-ren Y. Perturbation theory for nonlinear Klein–Gordon equation. Applied Mathematics and Mechanics. 23, 987–992 (2002). | |
dc.relation.references | [6] Mitropolsky Yu. A., Moseenkov B. I. Asymptotic solutions of partial differential equations. Kyiv, Vyshcha Shkola (1976), (in Russian). | |
dc.relation.references | [7] Cveticanin L. Pure Nonlinear Oscillator. In: Strong Nonlinear Oscillators. Mathematical Engineering. Springer (2018). | |
dc.relation.references | [8] Nazarkevych M. Investigation of Beta- and Ateb-function dependencies. Bulletin of the National University “Lviv Polytechnic”. 732, 207–216 (2012), (in Ukrainian). | |
dc.relation.references | [9] Sokil B. I., Pukach P. Ya., Sokil M. B., Vovk M. I. Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical Modeling and Computing. 7 (2), 269–277 (2020). | |
dc.relation.references | [10] Bayat M., Pakar I., Domairry G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Latin American Journal of Solids and Structures. 1, 1–93 (2012). | |
dc.relation.references | [11] Andrukhiv A., Sokil M., Sokil B., Fedushko S., Syerov Y., Karovic V., Klynina T. Influence of Impulse Disturbances on Oscillations of Nonlinearly Elastic Bodies. Mathematics. 9 (8), 819 (2021). | |
dc.relation.references | [12] Ponomareva S., van Horssen W. T. On applying the Laplace transform method to an equation describing an axially moving string. Proceedings in Applied Mathematics and Mechanics. 4 (1), 107–108 (2004). | |
dc.relation.references | [13] Yang X.-D., Chen L.-Q. Stability in parametric resonance of axially acceleratingbeams constituted by Boltzmann’s superposition principle. Journal of Sound and Vibration. 289 (1–3), 54–65 (2006). | |
dc.relation.references | [14] Ding H., Zhang G. C., Chen L. Q. Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mechanics Research Communications. 38 (1), 52–56 (2011). | |
dc.relation.references | [15] Pellicano F., Vestroni F. Сomplex dynamics of high-speed axiallymoving systems. Journal of Sound and Vibration. 258 (1), 31–44 (2002). | |
dc.relation.references | [16] Chen L.-Q. Analysis and control of transverse vibrations of axially moving strings. Appllied Mechanics Reviews. 58 (2), 91–116 (2005). | |
dc.relation.references | [17] Sokil B. I., Nazar I. I. Dynamic processes in mobile one-dimensional systems and generalization of the Van der Paul method for their study. Mashynoznavstvo. 8, 10–14 (2006), (in Ukrainian). | |
dc.relation.references | [18] Kharchenko E. V., Sokil M. B. Oscillations of moving nonlinearly elastic media and asymptotic method in their study. Scientific Bulletin of UNFU. 16 (1), 134–138 (2006), (in Ukrainian). | |
dc.relation.references | [19] Lyashuk O., Vovk Y., Sokil B., Klendii V., Ivasechko R., Dovbush T. Mathematical model of a dynamic process of transporting a bulk material by means of a tube scraping conveyor. Agricultural Engineering International: CIGR Journal. 21 (1), 74–81 (2019). | |
dc.relation.references | [20] Haris A., Alevras P., Mohammadpour M., Theodossiades S., O’Mahony M. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dynamics. 100 (1), 33–49 (2020). | |
dc.relation.references | [21] Hong D.-K., Joo D., Woo B.-C., Jeong Y.-H., Koo D.-H., Ahn C.-W., Cho Y.-H. Performance verification of a high speed motor-generator for a microturbine generator. International Journal of Precision Engineering and Manufacturing. 14 (7), 1237–1244 (2013). | |
dc.relation.references | [22] Barbosa J. M., F˘ar˘ag˘au A. B., van Dalen K. N., Steenbergen M. J. M. M. Modelling ballast via a non-linear lattice to assess its compaction behaviour at railway transition zones. Journal of Sound and Vibration. 530, 116942 (2022). | |
dc.relation.references | [23] Sokil B., Senyk A., Sokil M., Andrukhiv A., Kovtonyuk M., Gromaszek K., Ziyatbekova G., Turgynbekov Y. Mathematical models of dynamics of friable media and analytical methods of their research. Przeglad elektrotechniczny. 95 (4), 74–78 (2019). | |
dc.relation.references | [24] Pukach P. Y. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations. 14 (3), 369–378 (2012). | |
dc.relation.references | [25] Bracewell R. The Impulse Symbol. Ch. 5. In the book “The Fourier Transform and Its Applications”. New York, McGraw-Hill (2000). | |
dc.relation.references | [26] Oleynik O. A. Lectures on partial differential equations. Moscow, Binomial (2005), (in Russian). | |
dc.relation.references | [27] Mitropol’skii Yu. A. On construction of asymptotic solution of the perturbed Klein–Gordon equation. Ukrainian Mathematical Journal. 47 (9), 1378–1386 (1995). | |
dc.relation.referencesen | [1] Timoshenko S., Young D. H. Engineering Mechanics. New York, McGraw-Hill (2010). | |
dc.relation.referencesen | [2] Goroshko O. A., Kiba S. P. On natural and accompanying oscillations of an elastic structure with a moving load. Applied Mechanics. 18 (1), 118–121 (1972), (in Russian). | |
dc.relation.referencesen | [3] Dotsenko P. D. On the equations of motion of one-dimensional systems carrying a mobile distributed load. Mashinovedenie. 3, 31–37 (1979), (in Russian). | |
dc.relation.referencesen | [4] Mout L. On nonlinear oscillations of a string moving in the longitudinal direction. Proceedings of the American Society of Mechanical Engineers. In the book "Applied Mechanics". Moscow, Mir (1969), (in Russian). | |
dc.relation.referencesen | [5] Tian–Gui L., Jia-ren Y. Perturbation theory for nonlinear Klein–Gordon equation. Applied Mathematics and Mechanics. 23, 987–992 (2002). | |
dc.relation.referencesen | [6] Mitropolsky Yu. A., Moseenkov B. I. Asymptotic solutions of partial differential equations. Kyiv, Vyshcha Shkola (1976), (in Russian). | |
dc.relation.referencesen | [7] Cveticanin L. Pure Nonlinear Oscillator. In: Strong Nonlinear Oscillators. Mathematical Engineering. Springer (2018). | |
dc.relation.referencesen | [8] Nazarkevych M. Investigation of Beta- and Ateb-function dependencies. Bulletin of the National University "Lviv Polytechnic". 732, 207–216 (2012), (in Ukrainian). | |
dc.relation.referencesen | [9] Sokil B. I., Pukach P. Ya., Sokil M. B., Vovk M. I. Advanced asymptotic approaches and perturbation theory methods in the study of the mathematical model of single-frequency oscillations of a nonlinear elastic body. Mathematical Modeling and Computing. 7 (2), 269–277 (2020). | |
dc.relation.referencesen | [10] Bayat M., Pakar I., Domairry G. Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review. Latin American Journal of Solids and Structures. 1, 1–93 (2012). | |
dc.relation.referencesen | [11] Andrukhiv A., Sokil M., Sokil B., Fedushko S., Syerov Y., Karovic V., Klynina T. Influence of Impulse Disturbances on Oscillations of Nonlinearly Elastic Bodies. Mathematics. 9 (8), 819 (2021). | |
dc.relation.referencesen | [12] Ponomareva S., van Horssen W. T. On applying the Laplace transform method to an equation describing an axially moving string. Proceedings in Applied Mathematics and Mechanics. 4 (1), 107–108 (2004). | |
dc.relation.referencesen | [13] Yang X.-D., Chen L.-Q. Stability in parametric resonance of axially acceleratingbeams constituted by Boltzmann’s superposition principle. Journal of Sound and Vibration. 289 (1–3), 54–65 (2006). | |
dc.relation.referencesen | [14] Ding H., Zhang G. C., Chen L. Q. Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions. Mechanics Research Communications. 38 (1), 52–56 (2011). | |
dc.relation.referencesen | [15] Pellicano F., Vestroni F. Somplex dynamics of high-speed axiallymoving systems. Journal of Sound and Vibration. 258 (1), 31–44 (2002). | |
dc.relation.referencesen | [16] Chen L.-Q. Analysis and control of transverse vibrations of axially moving strings. Appllied Mechanics Reviews. 58 (2), 91–116 (2005). | |
dc.relation.referencesen | [17] Sokil B. I., Nazar I. I. Dynamic processes in mobile one-dimensional systems and generalization of the Van der Paul method for their study. Mashynoznavstvo. 8, 10–14 (2006), (in Ukrainian). | |
dc.relation.referencesen | [18] Kharchenko E. V., Sokil M. B. Oscillations of moving nonlinearly elastic media and asymptotic method in their study. Scientific Bulletin of UNFU. 16 (1), 134–138 (2006), (in Ukrainian). | |
dc.relation.referencesen | [19] Lyashuk O., Vovk Y., Sokil B., Klendii V., Ivasechko R., Dovbush T. Mathematical model of a dynamic process of transporting a bulk material by means of a tube scraping conveyor. Agricultural Engineering International: CIGR Journal. 21 (1), 74–81 (2019). | |
dc.relation.referencesen | [20] Haris A., Alevras P., Mohammadpour M., Theodossiades S., O’Mahony M. Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dynamics. 100 (1), 33–49 (2020). | |
dc.relation.referencesen | [21] Hong D.-K., Joo D., Woo B.-C., Jeong Y.-H., Koo D.-H., Ahn C.-W., Cho Y.-H. Performance verification of a high speed motor-generator for a microturbine generator. International Journal of Precision Engineering and Manufacturing. 14 (7), 1237–1244 (2013). | |
dc.relation.referencesen | [22] Barbosa J. M., F˘ar˘ag˘au A. B., van Dalen K. N., Steenbergen M. J. M. M. Modelling ballast via a non-linear lattice to assess its compaction behaviour at railway transition zones. Journal of Sound and Vibration. 530, 116942 (2022). | |
dc.relation.referencesen | [23] Sokil B., Senyk A., Sokil M., Andrukhiv A., Kovtonyuk M., Gromaszek K., Ziyatbekova G., Turgynbekov Y. Mathematical models of dynamics of friable media and analytical methods of their research. Przeglad elektrotechniczny. 95 (4), 74–78 (2019). | |
dc.relation.referencesen | [24] Pukach P. Y. On the unboundedness of a solution of the mixed problem for a nonlinear evolution equation at a finite time. Nonlinear Oscillations. 14 (3), 369–378 (2012). | |
dc.relation.referencesen | [25] Bracewell R. The Impulse Symbol. Ch. 5. In the book "The Fourier Transform and Its Applications". New York, McGraw-Hill (2000). | |
dc.relation.referencesen | [26] Oleynik O. A. Lectures on partial differential equations. Moscow, Binomial (2005), (in Russian). | |
dc.relation.referencesen | [27] Mitropol’skii Yu. A. On construction of asymptotic solution of the perturbed Klein–Gordon equation. Ukrainian Mathematical Journal. 47 (9), 1378–1386 (1995). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | поздовжньо рухомі системи | |
dc.subject | імпульсне збурення | |
dc.subject | асимптотичний розв’язок | |
dc.subject | хвильове число | |
dc.subject | амплітуда | |
dc.subject | частота | |
dc.subject | резонансне явище | |
dc.subject | longitudinally moving systems | |
dc.subject | impulse excitation | |
dc.subject | asymptotic solution | |
dc.subject | wave number | |
dc.subject | amplitude | |
dc.subject | frequency | |
dc.subject | resonance phenomenon | |
dc.title | Asymptotic method and wave theory of motion in studying the effect of periodic impulse forces on systems characterized by longitudinal motion velocity | |
dc.title.alternative | Асипмтотичний метод та хвильова теорія руху у дослідженні впливу імпульсних сил на системи, які характеризуються поздовжньою швидкістю руху | |
dc.type | Article |
Files
License bundle
1 - 1 of 1