Modeling the adaptive behavior of an agricultural pest population

dc.citation.epage225
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage212
dc.contributor.affiliationУніверситет Бордо
dc.contributor.affiliationУніверситет Тлемсена
dc.contributor.affiliationUniversity of Bordeaux
dc.contributor.affiliationUniversity of Tlemcen
dc.contributor.authorАйнсеба, Б.
dc.contributor.authorБугіма, С. М.
dc.contributor.authorКада, К. А.
dc.contributor.authorAinseba, B.
dc.contributor.authorBouguima, S. M.
dc.contributor.authorKada, K. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:50Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цій роботі формулюється модель, що описує ріст популяції шкідника зі сезонною діапаузою на стадії личинки. Модель включає стійкість комах до хімічних обробок та їх адаптацію до агресивного середовища. Вона складається з опису трьох класів: незрілої стадії, яка включає яйця, личинки та лялечки, і двох зрілих стадій, що відповідають уразливій дорослій стадії та стійкій до інсектицидів дорослій стадії. Основний результат полягає в аналітичному підході до існування невід’ємного періодичного розв’язку. Доведення використовує результати порівняння та теорему Камке для кооперативних систем. Як важливу ілюстрацію, наведено результат порогового типу щодо глобальної динаміки популяції шкідників у термінах індексу R. Якщо R 6 1, то тривіальний розв’язок є глобально асимптотично стабільним. Якщо R > 1, то додатний періодичний розв’язок є глобально асимптотично стійким. Чисельне моделювання підтверджує аналітичні результати.
dc.description.abstractIn this work, we formulate a model describing the growth of a pest population with seasonal diapause at the larval stage. The model includes the insect resistance to chemical treatments and their adaptation against a hostile environment. It consists on the description of three classes: the immature stage that includes eggs, larvae and pupae, and two mature stages corresponding to the vulnerable adult stage and the insecticide resistant adult stage. The main result consists in an analytical approach for the existence of a nonnegative periodic solution. The proof uses comparison results and Kamke’s Theorem for cooperative systems. As an important illustration, a threshold type result on the global dynamics of the pest population is given in terms of an index R. When R 6 1, the trivial solution is globally asymptotically stable. When R > 1, the positive periodic solution is globally asymptotically stable. Numerical simulations confirm the analytical results.
dc.format.extent212-225
dc.format.pages14
dc.identifier.citationAinseba B. Modeling the adaptive behavior of an agricultural pest population / B. Ainseba, S. M. Bouguima, K. A. Kada // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 212–225.
dc.identifier.citationenAinseba B. Modeling the adaptive behavior of an agricultural pest population / B. Ainseba, S. M. Bouguima, K. A. Kada // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 212–225.
dc.identifier.doi10.23939/mmc2023.01.212
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63492
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] CABI/EPPO, Lobesia botrana. [Distribution map]. In: Distribution Maps of Plant Pests. Wallingford, UK: CABI. Map 70; 2nd revision (2012).
dc.relation.references[2] Ainseba B., Picart D., Thi´ery D. An innovation multistage phenologically structured population model to understand the European grapevine moth dynamics. Journal of Mathematical Analysis and Applications. 382 (1), 34–46 (2011).
dc.relation.references[3] Ainseba B., Bouguima S. M. An adaptative model for a multistage structured population under fluctuation environment. Discrete and Continuous Dynamical Systems – B. 25 (6), 2331–2349 (2020).
dc.relation.references[4] Baumg¨artner J., Gutierrez A. P., Pesolillo S., Severini M. A model for the overwintering process of European grapevine moth Lobesia botrana (Denis & Schifferm¨uller) (Lepidoptera, Tortricidae) populations. Journal of Entomological and Acarological Research. 44 (1), e2 (2012).
dc.relation.references[5] Civolani S., Boselli M., Butturini A., Chicca M., Fanoe E. A., Cassanelli S. Assessment of Insecticide Resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia–Romagna Region. Journal of Economic Entomology. 107 (3), 1245–1249 (2014).
dc.relation.references[6] Picart D. Modelisation et Estimation des Param´etres Li´es es aux Succ´es Reproduction d’un Ravageur de la Vigne (Lobsia Botrana). PhD Thesis. Bordeaux I University (2009).
dc.relation.references[7] Thi´ery D., Monceau K., Moreau J. Larval intraspecific competition for food in the European grapevine moth Lobesia botrana. Bulletin of Entomological Research. 104 (4), 517–524 (2014).
dc.relation.references[8] Zalom F., Varela L., Cooper M. European Grapevine Moth (Lobesia botrana). University of California Agriculture and Natural Resources (2014).
dc.relation.references[9] Touzeau J. Mod´elisation de l’´evolution de l’Eud´emis de la Vigne pour la r´egion Midi Pyr´en´ees. Bollettino di Zoologia Agraria e di Bachicoltura (series II). 16, 26–28 (1981).
dc.relation.references[10] Kipiani A., Machavariani E. A., Sikharulidze E. I. Biological protection of vineyards against the grape leafroller. Sadovodstvo i Vinogradarstvo. 10, 23–25 (1990).
dc.relation.references[11] Pease C. E., L´opez–Olgu´ın J. F., P´erez–Moreno I., Marco–Manceb´on V. Effects of Kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and Its Compatibility With the Natural Enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology. 109 (2), 740–745 (2016).
dc.relation.references[12] Gourley S. A., Liu R., Wu J. Slowing the evolution of insecticide resistance in mosquitoes: a mathematical model. Proceedings of the Royal Society A. 467 (2132), 2127–2148 (2011).
dc.relation.references[13] Zhang X., Scarabel F., Wang X.-S., Wu J. Global continuation of periodic oscillations to a diapause rhythm. Journal of Dynamics and Differential Equations. 34, 2819–2839 (2020).
dc.relation.references[14] Lou Y., Liu K., He D., Gao D., Ruan S. Modelling diapause in mosquito population growth. Journal of Mathematical Biology. 78, 2259–2288 (2019).
dc.relation.references[15] Smith H. L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs). Vol. 41. American Mathematical Society (1995).
dc.relation.references[16] Smith H. L., Thieme H R. Monotone semi flow in scalar non-quasi-monotonic functional differential equations. Journal of Mathematical Analysis and Applications. 150 (2), 289–306 (1990).
dc.relation.references[17] Magal P., Seydi O., Wang F.-B. Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models. Journal of Mathematical Analysis and Applications. 479 (1), 450–481 (2019).
dc.relation.references[18] Hale J. K. Theory of Functional Differential Equations. Applied Mathematical Sciences. Springer–Verlag, NY (1977).
dc.relation.references[19] Walter W. Differential and Integral Inequalities. Springer–Verlag, Berlin–Heidelberg, NY (1970).
dc.relation.references[20] Wang Y., Zhao X.-Q. Convergence and subhomogeneous discrte dynamical systems on product Banach spaces. Bulletin of the London Mathematical Society. 35, 681–688 (2003).
dc.relation.references[21] Tak´aˇc P. Asymptotic behavior of discrete-time semigroups of sublinear, strongly, increasing mapping with applications to biology. Nonlinear Analysis: Theory, Methods & Applications. 14 (1), 35–42 (1990).
dc.relation.references[22] Zhao X.-Q. Global attractivity and stability in some monotone discrete dynamical systems. Bulletin of the Australian Mathematical Society. 53 (2), 305–324 (1996).
dc.relation.references[23] Knipling E. F. The basic principles of insect population suppression and management. Agriculture Handbook, no. 512. U.S. Dept. of Agriculture (1979).
dc.relation.references[24] McNabb A. Comparaison theorem for differential equations. Journal of Mathematical Analysis and Applications. 119 (1–2), 417–428 (1986).
dc.relation.references[25] Dishliev A. B., Bainov D. D. Continuous dependence on the initial condition of the solution of a system of differential equations with variable structure and with impulses. Publications of the Research Institute for Mathematical Sciences, Kyoto University. 23 (6), 923–936 (1987).
dc.relation.referencesen[1] CABI/EPPO, Lobesia botrana. [Distribution map]. In: Distribution Maps of Plant Pests. Wallingford, UK: CABI. Map 70; 2nd revision (2012).
dc.relation.referencesen[2] Ainseba B., Picart D., Thi´ery D. An innovation multistage phenologically structured population model to understand the European grapevine moth dynamics. Journal of Mathematical Analysis and Applications. 382 (1), 34–46 (2011).
dc.relation.referencesen[3] Ainseba B., Bouguima S. M. An adaptative model for a multistage structured population under fluctuation environment. Discrete and Continuous Dynamical Systems – B. 25 (6), 2331–2349 (2020).
dc.relation.referencesen[4] Baumg¨artner J., Gutierrez A. P., Pesolillo S., Severini M. A model for the overwintering process of European grapevine moth Lobesia botrana (Denis & Schifferm¨uller) (Lepidoptera, Tortricidae) populations. Journal of Entomological and Acarological Research. 44 (1), e2 (2012).
dc.relation.referencesen[5] Civolani S., Boselli M., Butturini A., Chicca M., Fanoe E. A., Cassanelli S. Assessment of Insecticide Resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia–Romagna Region. Journal of Economic Entomology. 107 (3), 1245–1249 (2014).
dc.relation.referencesen[6] Picart D. Modelisation et Estimation des Param´etres Li´es es aux Succ´es Reproduction d’un Ravageur de la Vigne (Lobsia Botrana). PhD Thesis. Bordeaux I University (2009).
dc.relation.referencesen[7] Thi´ery D., Monceau K., Moreau J. Larval intraspecific competition for food in the European grapevine moth Lobesia botrana. Bulletin of Entomological Research. 104 (4), 517–524 (2014).
dc.relation.referencesen[8] Zalom F., Varela L., Cooper M. European Grapevine Moth (Lobesia botrana). University of California Agriculture and Natural Resources (2014).
dc.relation.referencesen[9] Touzeau J. Mod´elisation de l’´evolution de l’Eud´emis de la Vigne pour la r´egion Midi Pyr´en´ees. Bollettino di Zoologia Agraria e di Bachicoltura (series II). 16, 26–28 (1981).
dc.relation.referencesen[10] Kipiani A., Machavariani E. A., Sikharulidze E. I. Biological protection of vineyards against the grape leafroller. Sadovodstvo i Vinogradarstvo. 10, 23–25 (1990).
dc.relation.referencesen[11] Pease C. E., L´opez–Olgu´ın J. F., P´erez–Moreno I., Marco–Manceb´on V. Effects of Kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and Its Compatibility With the Natural Enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology. 109 (2), 740–745 (2016).
dc.relation.referencesen[12] Gourley S. A., Liu R., Wu J. Slowing the evolution of insecticide resistance in mosquitoes: a mathematical model. Proceedings of the Royal Society A. 467 (2132), 2127–2148 (2011).
dc.relation.referencesen[13] Zhang X., Scarabel F., Wang X.-S., Wu J. Global continuation of periodic oscillations to a diapause rhythm. Journal of Dynamics and Differential Equations. 34, 2819–2839 (2020).
dc.relation.referencesen[14] Lou Y., Liu K., He D., Gao D., Ruan S. Modelling diapause in mosquito population growth. Journal of Mathematical Biology. 78, 2259–2288 (2019).
dc.relation.referencesen[15] Smith H. L. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (Mathematical Surveys and Monographs). Vol. 41. American Mathematical Society (1995).
dc.relation.referencesen[16] Smith H. L., Thieme H R. Monotone semi flow in scalar non-quasi-monotonic functional differential equations. Journal of Mathematical Analysis and Applications. 150 (2), 289–306 (1990).
dc.relation.referencesen[17] Magal P., Seydi O., Wang F.-B. Monotone abstract non-densely defined Cauchy problems applied to age structured population dynamic models. Journal of Mathematical Analysis and Applications. 479 (1), 450–481 (2019).
dc.relation.referencesen[18] Hale J. K. Theory of Functional Differential Equations. Applied Mathematical Sciences. Springer–Verlag, NY (1977).
dc.relation.referencesen[19] Walter W. Differential and Integral Inequalities. Springer–Verlag, Berlin–Heidelberg, NY (1970).
dc.relation.referencesen[20] Wang Y., Zhao X.-Q. Convergence and subhomogeneous discrte dynamical systems on product Banach spaces. Bulletin of the London Mathematical Society. 35, 681–688 (2003).
dc.relation.referencesen[21] Tak´aˇc P. Asymptotic behavior of discrete-time semigroups of sublinear, strongly, increasing mapping with applications to biology. Nonlinear Analysis: Theory, Methods & Applications. 14 (1), 35–42 (1990).
dc.relation.referencesen[22] Zhao X.-Q. Global attractivity and stability in some monotone discrete dynamical systems. Bulletin of the Australian Mathematical Society. 53 (2), 305–324 (1996).
dc.relation.referencesen[23] Knipling E. F. The basic principles of insect population suppression and management. Agriculture Handbook, no. 512. U.S. Dept. of Agriculture (1979).
dc.relation.referencesen[24] McNabb A. Comparaison theorem for differential equations. Journal of Mathematical Analysis and Applications. 119 (1–2), 417–428 (1986).
dc.relation.referencesen[25] Dishliev A. B., Bainov D. D. Continuous dependence on the initial condition of the solution of a system of differential equations with variable structure and with impulses. Publications of the Research Institute for Mathematical Sciences, Kyoto University. 23 (6), 923–936 (1987).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectсезонна діапауза
dc.subjectстійкість до інсектицидів
dc.subjectмонотонні системи
dc.subjectглобальне притягування
dc.subjectчисельне моделювання
dc.subjectseasonal diapause
dc.subjectresistance to insecticides
dc.subjectmonotone systems
dc.subjectglobal attractivity
dc.subjectnumerical simulations
dc.titleModeling the adaptive behavior of an agricultural pest population
dc.title.alternativeМоделювання адаптивної поведінки популяції шкідників сільського господарства
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Ainseba_B-Modeling_the_adaptive_behavior_212-225.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Ainseba_B-Modeling_the_adaptive_behavior_212-225__COVER.png
Size:
451.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: