Multi-scale hybrid and agent-based modeling of cell differentiation
dc.citation.epage | 624 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 617 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Університет Ліона 1 | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.affiliation | University Lyon 1 | |
dc.contributor.author | Бенмір, М. | |
dc.contributor.author | Беллай, К. | |
dc.contributor.author | Бужена, С. | |
dc.contributor.author | Вольперт, В. | |
dc.contributor.author | Benmir, M. | |
dc.contributor.author | Bellaj, K. | |
dc.contributor.author | Boujena, S. | |
dc.contributor.author | Volpert, V. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:21Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У цій роботі пропонується гібридна модель динаміки клітинної популяції, де клітини розглядаються як дискретні елементи, динаміка яких залежить від неперервної внутрішньоклітинної та позаклітинної регуляції. Пропонується гібридна модель, яка враховує внутрішньоклітинні та позаклітинні регуляції біологічних клітин і різних типів клітин, які включають недиференційовані клітини та два типи диференційованих клітин. Використовується алгоритм моделювання, який заснований на підході динамічних систем, з одного боку, і багатоагентному підході, з іншого боку. Обидва підходи реалізовано за допомогою NetLogo та Python. Обговорюється процес того, як клітина, яка диференціюється, вибирає між двома типами диференційованих клітин, і розглядаються лінії співіснування клітин. | |
dc.description.abstract | In this work we propose a hybrid model of cell population dynamics, where cells are considered as discrete elements whose dynamics depending on the intracellular and extracellular regulation. The model takes into account different cell types which include undifferentiated cells and two types of differentiated cells. We use a simulation algorithm based on the dynamical systems approach on the one hand, and the multi-agent approach on the other hand. Both approaches have been implemented using NetLogo and Python. We discuss cell choice between two types of differentiated cells and analyze the coexistence of cell lineages. | |
dc.format.extent | 617-624 | |
dc.format.pages | 8 | |
dc.identifier.citation | Multi-scale hybrid and agent-based modeling of cell differentiation / M. Benmir, K. Bellaj, S. Boujena, V. Volpert // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 617–624. | |
dc.identifier.citationen | Multi-scale hybrid and agent-based modeling of cell differentiation / M. Benmir, K. Bellaj, S. Boujena, V. Volpert // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 617–624. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.617 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63506 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Benmir M., Bessonov N., Boujena S., Volpert V. Travelling Waves of Cell Differentiation. Acta biotheoretica. 63 (4), 381–395 (2015). | |
dc.relation.references | [2] Anderson A., Rejniak K. Single-cell-based models in biology and medicine. Springer Science & Business Media (2007). | |
dc.relation.references | [3] Bernard S. Mod´elisation multi-´echelles en biologie. HAL. Vol. 2013 (2013). | |
dc.relation.references | [4] Osborne J. M., Walter A., Kershaw S., Mirams G., Fletcher A., Pathmanathan P., Gavaghan D., Jensen O., Maini P., Byrne H. A hybrid approach to multi-scale modelling of cancer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368 (1930), 5013–5028 (2010). | |
dc.relation.references | [5] Volpert V. Elliptic partial differential equations. Vol. 2, Springer (2014). | |
dc.relation.references | [6] Deutsch A., Dormann S. Mathematical modeling of biological pattern formation. Springer (2005). | |
dc.relation.references | [7] Karttunen M., Vattulainen I., Lukkarinen A. Novel methods in soft matter simulations. Vol. 640, Springer Science & Business Media (2004). | |
dc.relation.references | [8] Patel A. A., Gawlinski E. T., Lemieux S. K., Gatenby R. A. A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. Journal of Theoretical Biology. 213 (3), 315–331 (2001). | |
dc.relation.references | [9] Satoh A. Introduction to Practice of Molecular Simulation Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics. Elsevier (2010). | |
dc.relation.references | [10] Bessonov N., Eymard N., Kurbatova P., Volpert V. Mathematical modeling of erythropoiesis in vivo with multiple erythroblastic islands. Applied Mathematics Letters. 25 (9), 1217–1221 (2012). | |
dc.relation.references | [11] Demin I., Crauste F., Gandrillon O., Volpert V. A multi-scale model of erythropoiesis. Journal of biological dynamics. 4 (1), 59–70 (2010). | |
dc.relation.references | [12] Kurbatova P., Eymard N., Volpert V. Hybrid model of erythropoiesis. Acta Biotheoretica. 61 (3), 305–315 (2013). | |
dc.relation.references | [13] Bessonov N., Demin I., Pujo-Menjouet L., Volpert V. A multi-agent model describing self-renewal of differentiation effects on the blood cell population. Mathematical and Computer Modelling. 49 (11–12), 2116–2127 (2009). | |
dc.relation.references | [14] Wilensky U., Rand W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. The MIT Press (2015). | |
dc.relation.references | [15] Dalle Nogare D., Chitnis A. B. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Seminars in Cell & Developmental Biology. 100, 186–198 (2020). | |
dc.relation.references | [16] Vieira L. S., Laubenbacher R. C. Computational models in systems biology: standards, dissemination, and best practices. Current Opinion in Biotechnology. 75, 102702 (2022). | |
dc.relation.referencesen | [1] Benmir M., Bessonov N., Boujena S., Volpert V. Travelling Waves of Cell Differentiation. Acta biotheoretica. 63 (4), 381–395 (2015). | |
dc.relation.referencesen | [2] Anderson A., Rejniak K. Single-cell-based models in biology and medicine. Springer Science & Business Media (2007). | |
dc.relation.referencesen | [3] Bernard S. Mod´elisation multi-´echelles en biologie. HAL. Vol. 2013 (2013). | |
dc.relation.referencesen | [4] Osborne J. M., Walter A., Kershaw S., Mirams G., Fletcher A., Pathmanathan P., Gavaghan D., Jensen O., Maini P., Byrne H. A hybrid approach to multi-scale modelling of cancer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368 (1930), 5013–5028 (2010). | |
dc.relation.referencesen | [5] Volpert V. Elliptic partial differential equations. Vol. 2, Springer (2014). | |
dc.relation.referencesen | [6] Deutsch A., Dormann S. Mathematical modeling of biological pattern formation. Springer (2005). | |
dc.relation.referencesen | [7] Karttunen M., Vattulainen I., Lukkarinen A. Novel methods in soft matter simulations. Vol. 640, Springer Science & Business Media (2004). | |
dc.relation.referencesen | [8] Patel A. A., Gawlinski E. T., Lemieux S. K., Gatenby R. A. A cellular automaton model of early tumor growth and invasion: the effects of native tissue vascularity and increased anaerobic tumor metabolism. Journal of Theoretical Biology. 213 (3), 315–331 (2001). | |
dc.relation.referencesen | [9] Satoh A. Introduction to Practice of Molecular Simulation Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics. Elsevier (2010). | |
dc.relation.referencesen | [10] Bessonov N., Eymard N., Kurbatova P., Volpert V. Mathematical modeling of erythropoiesis in vivo with multiple erythroblastic islands. Applied Mathematics Letters. 25 (9), 1217–1221 (2012). | |
dc.relation.referencesen | [11] Demin I., Crauste F., Gandrillon O., Volpert V. A multi-scale model of erythropoiesis. Journal of biological dynamics. 4 (1), 59–70 (2010). | |
dc.relation.referencesen | [12] Kurbatova P., Eymard N., Volpert V. Hybrid model of erythropoiesis. Acta Biotheoretica. 61 (3), 305–315 (2013). | |
dc.relation.referencesen | [13] Bessonov N., Demin I., Pujo-Menjouet L., Volpert V. A multi-agent model describing self-renewal of differentiation effects on the blood cell population. Mathematical and Computer Modelling. 49 (11–12), 2116–2127 (2009). | |
dc.relation.referencesen | [14] Wilensky U., Rand W. An Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. The MIT Press (2015). | |
dc.relation.referencesen | [15] Dalle Nogare D., Chitnis A. B. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Seminars in Cell & Developmental Biology. 100, 186–198 (2020). | |
dc.relation.referencesen | [16] Vieira L. S., Laubenbacher R. C. Computational models in systems biology: standards, dissemination, and best practices. Current Opinion in Biotechnology. 75, 102702 (2022). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | диференціювання клітин | |
dc.subject | багатомасштабна гібридна модель | |
dc.subject | багатоагентне моделювання | |
dc.subject | cell differentiation | |
dc.subject | multi-scale hybrid model | |
dc.subject | multi-agents simulation | |
dc.title | Multi-scale hybrid and agent-based modeling of cell differentiation | |
dc.title.alternative | Багатомасштабне гібридне та агентне моделювання клітинного диференціювання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1