Fabrication of Activated Carbon/Chitosan Hybrid Material for Adsorptive Removal of Pb (II)

dc.citation.epage915
dc.citation.issue4
dc.citation.spage903
dc.contributor.affiliationUniversity of Kelaniya
dc.contributor.affiliationGampaha Wickramarachchi University of Indigenous Medicine
dc.contributor.authorPerera, Rajith A.
dc.contributor.authorPerera, Ruwan T.
dc.contributor.authorRajapakse, Chandima. S. K.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:14Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ цьому дослідженні синтезовано новий, економічно ефективний та екологічно чистий гібридний матеріал на основі активованого вугілля/хітозану через поєднання поверхневих властивостей активованого вугілля, отриманого з рисового лушпиння, та хітозану, вилученого з панцирів креветок "Чорний тигр", з метою отримання високофункціоналізованого пористого матеріалу з підвищеною адсорбційною здатністю до адсорбції Pb (II) для очищення води.
dc.description.abstractIn this study, a novel, cost-effective and environmentally friendly activated carbon/chitosan hybrid material (ACCHM) was synthesized by incorporating surface properties of both the activated carbon derived from rice husk and chitosan extracted from “Black Tiger” shrimp shells to generate a highly functionalized porous material with enhanced Pb (II) adsorption capacity for water purification.
dc.format.extent903-915
dc.format.pages13
dc.identifier.citationPerera R. A. Fabrication of Activated Carbon/Chitosan Hybrid Material for Adsorptive Removal of Pb (II) / Rajith A. Perera, Ruwan T. Perera, Chandima. S. K. Rajapakse // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 903–915.
dc.identifier.citationenPerera R. A. Fabrication of Activated Carbon/Chitosan Hybrid Material for Adsorptive Removal of Pb (II) / Rajith A. Perera, Ruwan T. Perera, Chandima. S. K. Rajapakse // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 903–915.
dc.identifier.doidoi.org/10.23939/chcht17.04.903
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63702
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Bolan, N.S.; Adriano, D.C.; Naidu R. Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. In Reviews of Environmental Contamination and Toxicology; Springer: New York, 2003; pp 1-44. https://doi.org/10.1007/0-387-21725-8_1
dc.relation.references[2] Heil, D.M.; Samani, Z.; Hanson, A.T.; Rudd B. Remediation of Lead Contaminated Soil by EDTA. I. Batch and Column Studies. Water Air Soil Pollut. 1999, 113, 77–95. https://doi.org/10.1023/A:1005032504487
dc.relation.references[3] Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Irreversible Precipitation of Mercury and Lead. J. Hazard. Mater.2001, 84, 73–82. https://doi.org/10.1016/S0304-3894(01)00190-X
dc.relation.references[4] Tao, Y.; Ye, L.; Pan, J.; Wang, Y.; Tang, B. Removal of Pb (II) from Aqueous Solution on Chitosan/TiO2 Hybrid Film. J. Hazard. Mater. 2009, 161, 718–722. https://doi.org/10.1016/j.jhazmat.2008.04.012
dc.relation.references[5] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.references[6] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.references[7] Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
dc.relation.references[8] Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste Materials for Activated Carbon Preparation and its Use in Aqueous-Phase Treatment: A Review. J. Environ. Manage. 2007, 85, 833–846. https://doi.org/10.1016/j.jenvman.2007.07.031
dc.relation.references[9] Jusoh, A.; Shiung, L.S.; Noor, M.J.M.M. A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead. Desalination 2007, 206, 9–16. https://doi.org/10.1016/j.desal.2006.04.048
dc.relation.references[10] Jadhav, A.; Mohanraj, G. Synthesis of Activated Carbon from Cocos nucifera Leaves Agrowaste by Chemical Activation Method. Chem. Chem. Technol. 2016, 10, 201–208. https://doi.org/10.23939/chcht10.02.201
dc.relation.references[11] Macalalad, A.; Ebete, Q.R.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1–8. https://doi.org/10.23939/chcht15.01.001
dc.relation.references[12] Abdulrazak, S.; Hussaini, K.; Sani, H.M. Evaluation of Removal Efficiency of Heavy Metals by Low-Cost Activated Carbon Prepared from African Palm Fruit. Appl. Water Sci. 2017, 7, 3151–3155. https://doi.org/10.1007/s13201-016-0460-x
dc.relation.references[13] Hasanzadeh, M.; Simchi, A.; Shahriyari, F.H. Nanoporous Composites of Activated Carbon-Metal Organic Frameworks for Organic Dye Adsorption: Synthesis, Adsorption Mechanism and Kinetics Studies. J. Ind. Eng. Chem. 2020, 81, 405–414. https://doi.org/10.1016/j.jiec.2019.09.031
dc.relation.references[14] Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C. Mesoporous Activated Carbon Fibers Synthesized from Denim Fabric Waste: Efficient Adsorbents for Removal of Textile Dye from Aqueous Solutions. J. Clean. Prod. 2018, 171, 482–490. https://doi.org/10.1016/j.jclepro.2017.10.034
dc.relation.references[15] Patnukao, P.; Kongsuwan, A.; Pavasant, P. Batch Studies of Adsorption of Copper and Lead on Activated Carbon from Eucalyptus camaldulensis Dehn. Bark. J. Environ. Sci. 2008, 20, 1028–1034. https://doi.org/10.1016/S1001-0742(08)62145-2
dc.relation.references[16] Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS nano 2009, 3, 2653–2659. https://doi.org/10.1021/nn900227d
dc.relation.references[17] Guo, M; Qiu, G.; Song, W. Poultry Litter-Based Activated Carbon for Removing Heavy Metal Ions in Water. Waste Manage. 2010, 30, 308–315. https://doi.org/10.1016/j.wasman.2009.08.010
dc.relation.references[18] Gerente, C.; Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption – Mechanisms and Models Review. Crit Rev Environ Sci Technol 2007, 37, 41–127. https://doi.org/10.1080/10643380600729089
dc.relation.references[19] Dutta, P.K.; Pradeep; Dutta, J.; Tripathi, V.S. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31.
dc.relation.references[20] Kalyani, S.; Krishnaiah, A.; Boddu, V.M. Adsorption of Divalent Cobalt from Aqueous Solution onto Chitosan–Coated Perlite Beads as Biosorbent. Sep Sci Technol 2007, 42, 2767–2786. https://doi.org/10.1080/01496390701511457
dc.relation.references[21] Hydari, S.; Sharififard, H.; Nabavinia, M.; Parvizi, M.R. A Comparative Investigation on Removal Performances of Commercial Activated Carbon, Chitosan Biosorbent and Chitosan/Activated Carbon Composite for Cadmium. Chem. Eng. J. 2012, 193-194, 276–282. https://doi.org/10.1016/j.cej.2012.04.057
dc.relation.references[22] Khan, T.A.; Peh, K.K.; Ch’ng, H.S. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. J. Pharm. Pharmaceut. Sci. 2002, 5, 205–212.
dc.relation.references[23] Laine, J.; Calafat, A.; labady, M. Preparation and Characterization of Activated Carbons from Coconut Shell Impregnated with Phosphoric Acid. Carbon 1989, 27, 191–195. https://doi.org/10.1016/0008-6223(89)90123-1
dc.relation.references[24] Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 784–88. https://doi.org/10.1016/j.saa.2010.08.053
dc.relation.references[25] Priyadarshini, B.; Rath, P. P.; Behera, S.S.; Panda, S.R.; Sahoo, T.R.; Parhi, P.K. Kinetics, Thermodynamics and Isotherm Studies on Adsorption of Eriochrome Black-T from Aqueous Solution Using Rutile TiO2. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 012051. http://doi.org/10.1088/1757-899X/310/1/012051
dc.relation.references[26] Nethaji, S.; Sivasamy, A.; Mandal, A.B. Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass. Int J Environ Sci Technol (Tehran) 2013, 10, 231–242. https://doi.org/10.1007/s13762-012-0112-0
dc.relation.references[27] Sharma, M.; Hazra, S.; Basu, S. Kinetic and Isotherm Studies on Adsorption of Toxic Pollutants Using Porous ZnO@SiO2 Monolith. J. Colloid Interface Sci. 2017, 504, 669–679. https://doi.org/10.1016/j.jcis.2017.06.020
dc.relation.references[28] Achmad, A.; Kassim, J.; Suan, T.K.; Amat, R.C.; Seey, T.L. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Direct Dye onto a Novel Green Adsorbent Developed from Uncaria Gambir Extract. J. Phys. Sci. 2012, 23, 1–13.
dc.relation.references[29] Cacicedo, M.L.; Manzo, R.M.; Municoy, S.; Bonazza, H.L.; Islan, G.A.; Desimone, M.; Bellimo, M.; Mammarella, E.J.; Castro, G.R. Immobilized Enzymes and their Applications. In Advances in Enzyme Technology; Singh, R.S.; Singhania, R.R., Eds.; Christian Larroche Elsevier, 2019; pp.169-200. https://doi.org/10.1016/B978-0-444-64114-4.00007-8
dc.relation.references[30] Gao, W.; Majumder, M.; Alemany, L.B.; Narayanan, T.N.; Ibarra, M.A.; Pradhan, B.K.; Ajayan, P.M. Engineered Graphite Oxide Materials for Application in Water Purification. ACS Appl. Mater. Interfaces 2011, 3, 1821–1826. https://doi.org/10.1021/am200300u
dc.relation.references[31] Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143 https://doi.org/10.1038/srep36143
dc.relation.referencesen[1] Bolan, N.S.; Adriano, D.C.; Naidu R. Role of Phosphorus in (Im)mobilization and Bioavailability of Heavy Metals in the Soil-Plant System. In Reviews of Environmental Contamination and Toxicology; Springer: New York, 2003; pp 1-44. https://doi.org/10.1007/0-387-21725-8_1
dc.relation.referencesen[2] Heil, D.M.; Samani, Z.; Hanson, A.T.; Rudd B. Remediation of Lead Contaminated Soil by EDTA. I. Batch and Column Studies. Water Air Soil Pollut. 1999, 113, 77–95. https://doi.org/10.1023/A:1005032504487
dc.relation.referencesen[3] Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Irreversible Precipitation of Mercury and Lead. J. Hazard. Mater.2001, 84, 73–82. https://doi.org/10.1016/S0304-3894(01)00190-X
dc.relation.referencesen[4] Tao, Y.; Ye, L.; Pan, J.; Wang, Y.; Tang, B. Removal of Pb (II) from Aqueous Solution on Chitosan/TiO2 Hybrid Film. J. Hazard. Mater. 2009, 161, 718–722. https://doi.org/10.1016/j.jhazmat.2008.04.012
dc.relation.referencesen[5] Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.referencesen[6] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220–229. https://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.referencesen[7] Fiyadh, S.S.; AlSaadi, M.A.; Jaafar, W.Z.; AlOmar, M.K.; Fayaed, S.S.; Mohd, N.S.; Hin, L.S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
dc.relation.referencesen[8] Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste Materials for Activated Carbon Preparation and its Use in Aqueous-Phase Treatment: A Review. J. Environ. Manage. 2007, 85, 833–846. https://doi.org/10.1016/j.jenvman.2007.07.031
dc.relation.referencesen[9] Jusoh, A.; Shiung, L.S.; Noor, M.J.M.M. A Simulation Study of the Removal Efficiency of Granular Activated Carbon on Cadmium and Lead. Desalination 2007, 206, 9–16. https://doi.org/10.1016/j.desal.2006.04.048
dc.relation.referencesen[10] Jadhav, A.; Mohanraj, G. Synthesis of Activated Carbon from Cocos nucifera Leaves Agrowaste by Chemical Activation Method. Chem. Chem. Technol. 2016, 10, 201–208. https://doi.org/10.23939/chcht10.02.201
dc.relation.referencesen[11] Macalalad, A.; Ebete, Q.R.; Gutierrez, D.; Ramos, M.; Magoling, B.J. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1–8. https://doi.org/10.23939/chcht15.01.001
dc.relation.referencesen[12] Abdulrazak, S.; Hussaini, K.; Sani, H.M. Evaluation of Removal Efficiency of Heavy Metals by Low-Cost Activated Carbon Prepared from African Palm Fruit. Appl. Water Sci. 2017, 7, 3151–3155. https://doi.org/10.1007/s13201-016-0460-x
dc.relation.referencesen[13] Hasanzadeh, M.; Simchi, A.; Shahriyari, F.H. Nanoporous Composites of Activated Carbon-Metal Organic Frameworks for Organic Dye Adsorption: Synthesis, Adsorption Mechanism and Kinetics Studies. J. Ind. Eng. Chem. 2020, 81, 405–414. https://doi.org/10.1016/j.jiec.2019.09.031
dc.relation.referencesen[14] Silva, T.L.; Cazetta, A.L.; Souza, P.S.C.; Zhang, T.; Asefa, T.; Almeida, V.C. Mesoporous Activated Carbon Fibers Synthesized from Denim Fabric Waste: Efficient Adsorbents for Removal of Textile Dye from Aqueous Solutions. J. Clean. Prod. 2018, 171, 482–490. https://doi.org/10.1016/j.jclepro.2017.10.034
dc.relation.referencesen[15] Patnukao, P.; Kongsuwan, A.; Pavasant, P. Batch Studies of Adsorption of Copper and Lead on Activated Carbon from Eucalyptus camaldulensis Dehn. Bark. J. Environ. Sci. 2008, 20, 1028–1034. https://doi.org/10.1016/S1001-0742(08)62145-2
dc.relation.referencesen[16] Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS nano 2009, 3, 2653–2659. https://doi.org/10.1021/nn900227d
dc.relation.referencesen[17] Guo, M; Qiu, G.; Song, W. Poultry Litter-Based Activated Carbon for Removing Heavy Metal Ions in Water. Waste Manage. 2010, 30, 308–315. https://doi.org/10.1016/j.wasman.2009.08.010
dc.relation.referencesen[18] Gerente, C.; Lee, V.K.C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals From Wastewaters by Adsorption – Mechanisms and Models Review. Crit Rev Environ Sci Technol 2007, 37, 41–127. https://doi.org/10.1080/10643380600729089
dc.relation.referencesen[19] Dutta, P.K.; Pradeep; Dutta, J.; Tripathi, V.S. Chitin and Chitosan: Chemistry, Properties and Applications. J. Sci. Ind. Res. 2004, 63, 20–31.
dc.relation.referencesen[20] Kalyani, S.; Krishnaiah, A.; Boddu, V.M. Adsorption of Divalent Cobalt from Aqueous Solution onto Chitosan–Coated Perlite Beads as Biosorbent. Sep Sci Technol 2007, 42, 2767–2786. https://doi.org/10.1080/01496390701511457
dc.relation.referencesen[21] Hydari, S.; Sharififard, H.; Nabavinia, M.; Parvizi, M.R. A Comparative Investigation on Removal Performances of Commercial Activated Carbon, Chitosan Biosorbent and Chitosan/Activated Carbon Composite for Cadmium. Chem. Eng. J. 2012, 193-194, 276–282. https://doi.org/10.1016/j.cej.2012.04.057
dc.relation.referencesen[22] Khan, T.A.; Peh, K.K.; Ch’ng, H.S. Reporting Degree of Deacetylation Values of Chitosan: The Influence of Analytical Methods. J. Pharm. Pharmaceut. Sci. 2002, 5, 205–212.
dc.relation.referencesen[23] Laine, J.; Calafat, A.; labady, M. Preparation and Characterization of Activated Carbons from Coconut Shell Impregnated with Phosphoric Acid. Carbon 1989, 27, 191–195. https://doi.org/10.1016/0008-6223(89)90123-1
dc.relation.referencesen[24] Paluszkiewicz, C.; Stodolak, E.; Hasik, M.; Blazewicz, M. FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 784–88. https://doi.org/10.1016/j.saa.2010.08.053
dc.relation.referencesen[25] Priyadarshini, B.; Rath, P. P.; Behera, S.S.; Panda, S.R.; Sahoo, T.R.; Parhi, P.K. Kinetics, Thermodynamics and Isotherm Studies on Adsorption of Eriochrome Black-T from Aqueous Solution Using Rutile TiO2. IOP Conf. Ser., Mater. Sci. Eng. 2018, 012051. http://doi.org/10.1088/1757-899X/310/1/012051
dc.relation.referencesen[26] Nethaji, S.; Sivasamy, A.; Mandal, A.B. Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass. Int J Environ Sci Technol (Tehran) 2013, 10, 231–242. https://doi.org/10.1007/s13762-012-0112-0
dc.relation.referencesen[27] Sharma, M.; Hazra, S.; Basu, S. Kinetic and Isotherm Studies on Adsorption of Toxic Pollutants Using Porous ZnO@SiO2 Monolith. J. Colloid Interface Sci. 2017, 504, 669–679. https://doi.org/10.1016/j.jcis.2017.06.020
dc.relation.referencesen[28] Achmad, A.; Kassim, J.; Suan, T.K.; Amat, R.C.; Seey, T.L. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Direct Dye onto a Novel Green Adsorbent Developed from Uncaria Gambir Extract. J. Phys. Sci. 2012, 23, 1–13.
dc.relation.referencesen[29] Cacicedo, M.L.; Manzo, R.M.; Municoy, S.; Bonazza, H.L.; Islan, G.A.; Desimone, M.; Bellimo, M.; Mammarella, E.J.; Castro, G.R. Immobilized Enzymes and their Applications. In Advances in Enzyme Technology; Singh, R.S.; Singhania, R.R., Eds.; Christian Larroche Elsevier, 2019; pp.169-200. https://doi.org/10.1016/B978-0-444-64114-4.00007-8
dc.relation.referencesen[30] Gao, W.; Majumder, M.; Alemany, L.B.; Narayanan, T.N.; Ibarra, M.A.; Pradhan, B.K.; Ajayan, P.M. Engineered Graphite Oxide Materials for Application in Water Purification. ACS Appl. Mater. Interfaces 2011, 3, 1821–1826. https://doi.org/10.1021/am200300u
dc.relation.referencesen[31] Yu, H.; Zha, B.; Chaoke, B.; Li, R.; Xing, R. High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143 https://doi.org/10.1038/srep36143
dc.relation.urihttps://doi.org/10.1007/0-387-21725-8_1
dc.relation.urihttps://doi.org/10.1023/A:1005032504487
dc.relation.urihttps://doi.org/10.1016/S0304-3894(01)00190-X
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.04.012
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2010.11.011
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.01.024
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2019.05.154
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2007.07.031
dc.relation.urihttps://doi.org/10.1016/j.desal.2006.04.048
dc.relation.urihttps://doi.org/10.23939/chcht10.02.201
dc.relation.urihttps://doi.org/10.23939/chcht15.01.001
dc.relation.urihttps://doi.org/10.1007/s13201-016-0460-x
dc.relation.urihttps://doi.org/10.1016/j.jiec.2019.09.031
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2017.10.034
dc.relation.urihttps://doi.org/10.1016/S1001-0742(08)62145-2
dc.relation.urihttps://doi.org/10.1021/nn900227d
dc.relation.urihttps://doi.org/10.1016/j.wasman.2009.08.010
dc.relation.urihttps://doi.org/10.1080/10643380600729089
dc.relation.urihttps://doi.org/10.1080/01496390701511457
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.04.057
dc.relation.urihttps://doi.org/10.1016/0008-6223(89)90123-1
dc.relation.urihttps://doi.org/10.1016/j.saa.2010.08.053
dc.relation.urihttp://doi.org/10.1088/1757-899X/310/1/012051
dc.relation.urihttps://doi.org/10.1007/s13762-012-0112-0
dc.relation.urihttps://doi.org/10.1016/j.jcis.2017.06.020
dc.relation.urihttps://doi.org/10.1016/B978-0-444-64114-4.00007-8
dc.relation.urihttps://doi.org/10.1021/am200300u
dc.relation.urihttps://doi.org/10.1038/srep36143
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Perera R. A., Perera R. T., Rajapakse C. S. K., 2023
dc.subjectактивоване вугілля
dc.subjectадсорбційне вилучення
dc.subjectбіомаса
dc.subjectхітозан
dc.subjectплюмбум
dc.subjectпористий матеріал
dc.subjectactivated carbon
dc.subjectadsorptive removal
dc.subjectbiomass
dc.subjectchitosan
dc.subjectlead
dc.subjectporous material
dc.titleFabrication of Activated Carbon/Chitosan Hybrid Material for Adsorptive Removal of Pb (II)
dc.title.alternativeВиготовлення гібридного матеріалу на основі активованого вугілля/хітозану для адсорбційного вилучення Pb (II)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Perera_R_A-Fabrication_of_Activated_903-915.pdf
Size:
657.65 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Perera_R_A-Fabrication_of_Activated_903-915__COVER.png
Size:
564.09 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: