Clay-Sand Wettability Evaluation for Heavy Crude Oil Mobility

dc.citation.epage453
dc.citation.issue3
dc.citation.spage448
dc.contributor.affiliationUnidad Profesional “Adolfo López Mateos”
dc.contributor.affiliationFADU- Universidad Autónoma de Tamaulipas Circuito Universitario S/N, Centro Universitario Sur. Tampico
dc.contributor.affiliationUniversidad Nacional Autónoma de México
dc.contributor.authorCortes-Cano, Jose M.
dc.contributor.authorSuarez-Dominguez, Edgardo J.
dc.contributor.authorPerez-Sanchez, Josue F.
dc.contributor.authorLozano-Navarro, Jessica I.
dc.contributor.authorPalacio-Perez, Arturo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T12:00:08Z
dc.date.available2024-01-22T12:00:08Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractДля встановлення впливу дистильованої води, знижувача в’язкості біодизельного палива та комерційного нейоногенного ПАР на ефективну проникність піщаної глини визначено кут змочування, лінійне набухання та рух рідини через пористе середовище на прикладі північно-мексиканської нафти. Показано, що кількість глини суттєво впливає на значення кута змочування, з меншою величиною змочуваності в каменистому середовищі. Додавання біодизеля викликає рух рідини, подібний до додавання дистильованої води. Підсилювач потоку на основі біодизеля не тільки зменшує в'язкість сирої нафти, але також покращує текучість крізь пористі середовища. Однак така поведінка справедлива лише в тому випадку, якщо ґрунт не насичений солоною водою.
dc.description.abstractIn this work, the effect of distilled water, a biodiesel viscosity reducer, and a commercial nonionic surfactant on the apparent permeability of clay-sand cores through the analysis of contact angle, linear swelling, and porous media fluid flow for a northern Mexico crude oil was evaluated. The results showed that the clay content influences the contact angle values having a lower wettability effect in the rocky medium. The addition of biodiesel produces a fluid movement similar to the addition of distilled water. Biodiesel-based flow enhancer not only reduces the crude oil viscosity but also improves the flowability through porous media. However, this behavior is only valid if the soil is not saturated with salty water.
dc.format.extent448-453
dc.format.pages6
dc.identifier.citationClay-Sand Wettability Evaluation for Heavy Crude Oil Mobility / Jose M. Cortes-Cano, Edgardo J. Suarez-Dominguez, Josue F. Perez-Sanchez, Jessica I. Lozano-Navarro, Arturo Palacio-Perez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 448–453.
dc.identifier.citationenClay-Sand Wettability Evaluation for Heavy Crude Oil Mobility / Jose M. Cortes-Cano, Edgardo J. Suarez-Dominguez, Josue F. Perez-Sanchez, Jessica I. Lozano-Navarro, Arturo Palacio-Perez // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 448–453.
dc.identifier.doidoi.org/10.23939/chcht16.03.448
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60991
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (16), 2022
dc.relation.references[1] Lajous, A. Declinación y Destino de las Exportaciones de Petróleo Crudo Mexicano. Foro Int. 2019, 59, 189-259. https://doi.org/10.24201/fi.v59i1.2585
dc.relation.references[2] Gutiérrez, R.; Vergara González, R.; Díaz Carreño, M. Predicción de la volatilidad en el Mercado del Petróleo Mexicano ante la Presencia de Efectos Asimétricos. Cuad. Econ. (Spain) 2015, 34, 299. https://doi.org/10.15446/cuad.econ.v34n65.48702
dc.relation.references[3] http://sih.hidrocarburos.gob.mx/
dc.relation.references[4] Suárez-Domínguez, E.-J.; Manuel-Rivera, R., Coronel-Santillán, A.-U.; Palacio‐Pérez, A.; Izquierdo‐Kulich, E. Estudio de Coeficientes Reológicos de un Crudo Extrapesado Mezclado con un Biorreductor de Viscosidad. Ingeniería Mecánica 2015, 18, 87-92.
dc.relation.references[5] Santos, I.C.V.M.; Oliveira, P.F.; Mansur, C.R.E. Factors that Affect Crude Oil Viscosity and Techniques to Reduce it: A Review. Braz. J. Petrol. Gas 2017, 11, 115-130. https://doi.org/10.5419/bjpg2017-0010
dc.relation.references[6] Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, 2014. https://doi.org/10.1201/b16559
dc.relation.references[7] Zhang, F.; Shan, D.; Liu, G.; Li, X.; Sun, J. Overview of Flow Improvers for Crude Oil Production in China. Earth Environ. Sci. 2020, 453, 012037. https://doi.org/10.1088/1755-1315/453/1/012037
dc.relation.references[8] Yang, Y.; Guo, J.; Cheng, Z.; Wu, W.; Zhang, Jianjun; Zhang, Jiangwei; Yang, Z.; Zhang, D. New Composite Viscosity Reducer with Both Asphaltene Dispersion and Emulsifying Capability for Heavy and Ultraheavy Crude Oils. Energ. Fuel. 2017, 31, 1159-1173. https://doi.org/10.1021/acs.energyfuels.6b02265
dc.relation.references[9] Li, X.; Shi, L.; Li, H.; Liu, P,; Luo, J.; Yuan, Z. Experimental Study on Viscosity Reducers for SAGD in Developing Extra-Heavy Oil Reservoirs. J. Petrol. Sci. Eng. 2018, 166, 25-32. https://doi.org/10.1016/j.petrol.2018.03.022
dc.relation.references[10] Negi, H.; Faujdar, E.; Saleheen, R.; Singh, R.K. Viscosity Modification of Heavy Crude Oil by Using a Chitosan-Based Cationic Surfactant. Energ. Fuel. 2020, 34, 4474-4483. https://doi.org/10.1021/acs.energyfuels.0c00296
dc.relation.references[11] Perez-Sanchez, J.F.; Gallegos-Villella, R.R.; Gomez-Espinoza, J., Suarez-Dominguez, E.J. Determining the Effect of a Viscosity Reducer on Water – Heavy Crude Oil Emulsions. IJEAT 2019, 8, 844-848.
dc.relation.references[12] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Li, Y.; Liu, L.; Han, X. An Investigation on Environmentally Friendly Biodiesel-Based Invert Emulsion Drilling Fluid. J. Pet. Explor. Prod. Technol. 2016, 6, 505-517. https://doi.org/10.1007/s13202-015-0205-7
dc.relation.references[13] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid, Part 1: Biodiesel Evaluation, Invert-Emulsion Properties, and Development of a Novel Emulsifier Package. SPE J. 2016, 21, 1755-1766. https://doi.org/10.2118/180918-PA
dc.relation.references[14] dos Santos, W.R.; Caser, E.S.; Soares, E.J.; Siqueira, R.N. Drag Reduction in Turbulent Flows by Diutan Gum: A Very Stable Natural Drag Reducer. J. NonNewton. Fluid. Mech. 2020, 276, 104223. https://doi.org/10.1016/j.jnnfm.2019.104223
dc.relation.references[15] Bello, E.I.; Adekanbi, I.T.; Akinbode, F.O. Production and Characterization of Coconut (Cocus Nucifera) Oil and its Methyl Ester. Eur. J. Pure Appl. Chem. 2016, 3, 38.
dc.relation.references[16] Brame, S.D.; Li, L.; Mukherjee, B.; Patil, P.D.; Potisek, S.; Nguyen, Q.P. Organic Bases as Additives for Steam-Assisted Gravity Drainage. Petrol. Sci. 2019, 16, 1332-1343. https://doi.org/10.1007/s12182-019-0341-7
dc.relation.references[17] Xiao, S.; Zeng, Y.; Vavra, E.D.; He, P.; Puerto, M.; Hirasaki, G.J.; Biswal, S.L. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media. Langmuir 2018, 34, 739-749. https://doi.org/10.1021/acs.langmuir.7b02766
dc.relation.references[18] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-In-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Petrol. Sci. Eng. 2018, 165, 673-690. https://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.references[19] Abraham, D.V.; Orodu, O.D.; Efeovbokhan, V.E.; Olabode, O.; Ojo, T.I. The Influence of Surfactant Concentration and Surfactant Type on the Interfacial Tension of Heavy Crude Oil/Brine/Surfactant System. Pet. Coal 2020, 62, 292-298.
dc.relation.references[20] Hamouda, A.A.; Gupta, S. Enhancing Oil Recovery from Chalk Reservoirs by a Low-Salinity Water Flooding Mechanism and Fluid/Rock Interaction. Energies 2017, 10, 576-592. https://doi.org/10.3390/en10040576
dc.relation.references[21] Liu, Y.; Hu, W.; Cao, J.; Wang, X.; Zhu, F.; Tang, Q.; Gao, W. Fluid–Rock Interaction and its Effects on the Upper Triassic Tight Sandstones in the Sichuan Basin, China: Insights from Petrographic and Geochemical Study of Carbonate Cements. Sediment. Geol. 2019, 383, 121-135. https://doi.org/10.1016/j.sedgeo.2019.01.012
dc.relation.references[22] Mehraban, M.F.; Afzali, S.; Ahmadi, Z.; Mokhtari, R.; Ayatollahi, S.; Sharifi, M.; Kazemi, A.; Nasiri,M.; Fathollahi, S. Conference Proceedings, 19th European Symposium on Improved Oil Recovery, Stavanger, Norway, April 24-27, 2017; European Association of Geoscientists & Engineers: Stavanger, 2017; 1. https://doi.org/10.3997/2214-4609.201700311
dc.relation.references[23] Chen, Y.; Xie, Q.; Sari, A.; Brady, P.V.; Saeedi, A. Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs. Fuel 2018, 215, 171-177. https://doi.org/10.1016/j.fuel.2017.10.031
dc.relation.references[24] Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nature protocols 2018, 13, 1521-1538. https://doi.org/10.1038/s41596-018-0003-z
dc.relation.references[25] Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. In Surface Science Techniques; Bracco, G.; Holst B., Eds.; Springer Series in Surface Sciences; Springer: Berlin, Heidelberg, 2013; pp 3-34. https://doi.org/10.1007/978-3-642-34243-1_1
dc.relation.references[26] Jing, J.; Yin, R.; Zhu, G.; Xue, J.; Wang, S.; Wang, S. Viscosity and Contact Angle Prediction of Low Water-Containing Heavy Crude Oil Diluted with Light Oil. J. Petrol. Sci. Eng. 2019, 176, 1121-1134. https://doi.org/10.1016/j.petrol.2019.02.012
dc.relation.references[27] Suárez-Domínguez, E.J.; Pérez-Sánchez, J.F.; Palacio-Pérez, A.; Rodríguez-Valdes, A.; Izquierdo-Kulich, E.; González-Santana, S. A Viscosity Bio-Reducer for Extra-Heavy Crude Oil. Petrol. Sci. Technol. 2018, 36, 166-172. https://doi.org/10.1080/10916466.2017.1413387
dc.relation.references[28] Perez-Sanchez, J.F.; Diaz-Zavala, N.P.; Gonzalez-Santana, S.; Izquierdo-Kulich, E.F.; Suarez-Dominguez, E.J. Water-In-Oil Emulsions through Porous Media and the Effect of Surfactants: Theoretical Approaches. Processes 2019, 7, 620. https://doi.org/10.3390/pr7090620
dc.relation.references[29] Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Palacio-Perez A.; Izquierdo-Kulich, E.; Gonzalez-Santana, S. Flow Enhancer Influence on Non-Isothermal Systems for Heavy Crude Oil Production. Acta Universitaria [Online] 2020, 30, e2645. https://doi.org/10.15174/au.2020.2645 (accessed May 21, 2020)
dc.relation.references[30] Perez-Sanchez, J.F.; Palacio-Perez, A.; Suarez-Dominguez, E.J.; Diaz-Zavala, N.P.; Izquierdo-Kulich, E. Evaluation of Surface Tension Modifiers for Crude Oil Transport Through Porous Media. J. Petrol. Sci. Eng. 2020, 192, 107319. https://doi.org/10.1016/j.petrol.2020.107319
dc.relation.references[31] Luque, M.M.; Urban-Rascon, E.; Aguilera, R.F.; Aguilera, R. Mexican Unconventional Plays: Geoscience, Endowment, and Economic Considerations. SPE Reserv. Evaluation Eng. 2018, 21, 533-549. https://doi.org/10.2118/189438-PA
dc.relation.references[32] Centro Nacional de Información de Hidrocarburos. Atlas Geológico Cuenca Tampico-Misantla. Centro Nacional de Información de Hidrocarburos, 2017. https://hidrocarburos.gob.mx/media/3091/atlas_geologico_cuenca_tampico-m... (accessed Oct 21, 2021)
dc.relation.references[33] Chen, Z.; Zhang, Z.; Liu, D.; Chi, X.; Chen, W.; Chi, R. Swelling of Clay Minerals During the Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores by Magnesium Salts. Powder Technol. 2020, 367, 889-900. https://doi.org/10.1016/j.powtec.2020.04.008
dc.relation.references[34] Wang, Y.-L.; Yan Q.-B.; Guo Z.; Guo, G.; Deng, Q.; Zhang, J.; Chen, J. Investigation of Oleate-Diethylamine-Epichlorohydrin Copolymer as a Clay Swelling Inhibitor for Shale Oil/Gas Exploration. Petrol. Chem. 2018, 58, 245-249. https://doi.org/10.1134/S0965544118030167
dc.relation.references[35] Mathias, S.A.; Greenwell, H.C.; Withers, C.; Erdogan, A.R.; McElwaine, J.N.; MacMinn, C. Analytical Solution for Clay Plug Swelling Experiments. Appl. Clay Sci. 2017, 149, 75-78. https://doi.org/10.1016/j.clay.2017.07.021
dc.relation.references[36] RezaeiDoust, A.; Puntervold, T.; Austad, T. Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy Fuels 2011, 25, 2151-2162. https://doi.org/10.1021/ef200215y
dc.relation.referencesen[1] Lajous, A. Declinación y Destino de las Exportaciones de Petróleo Crudo Mexicano. Foro Int. 2019, 59, 189-259. https://doi.org/10.24201/fi.v59i1.2585
dc.relation.referencesen[2] Gutiérrez, R.; Vergara González, R.; Díaz Carreño, M. Predicción de la volatilidad en el Mercado del Petróleo Mexicano ante la Presencia de Efectos Asimétricos. Cuad. Econ. (Spain) 2015, 34, 299. https://doi.org/10.15446/cuad.econ.v34n65.48702
dc.relation.referencesen[3] http://sih.hidrocarburos.gob.mx/
dc.relation.referencesen[4] Suárez-Domínguez, E.-J.; Manuel-Rivera, R., Coronel-Santillán, A.-U.; Palacio‐Pérez, A.; Izquierdo‐Kulich, E. Estudio de Coeficientes Reológicos de un Crudo Extrapesado Mezclado con un Biorreductor de Viscosidad. Ingeniería Mecánica 2015, 18, 87-92.
dc.relation.referencesen[5] Santos, I.C.V.M.; Oliveira, P.F.; Mansur, C.R.E. Factors that Affect Crude Oil Viscosity and Techniques to Reduce it: A Review. Braz. J. Petrol. Gas 2017, 11, 115-130. https://doi.org/10.5419/bjpg2017-0010
dc.relation.referencesen[6] Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, 2014. https://doi.org/10.1201/b16559
dc.relation.referencesen[7] Zhang, F.; Shan, D.; Liu, G.; Li, X.; Sun, J. Overview of Flow Improvers for Crude Oil Production in China. Earth Environ. Sci. 2020, 453, 012037. https://doi.org/10.1088/1755-1315/453/1/012037
dc.relation.referencesen[8] Yang, Y.; Guo, J.; Cheng, Z.; Wu, W.; Zhang, Jianjun; Zhang, Jiangwei; Yang, Z.; Zhang, D. New Composite Viscosity Reducer with Both Asphaltene Dispersion and Emulsifying Capability for Heavy and Ultraheavy Crude Oils. Energ. Fuel. 2017, 31, 1159-1173. https://doi.org/10.1021/acs.energyfuels.6b02265
dc.relation.referencesen[9] Li, X.; Shi, L.; Li, H.; Liu, P,; Luo, J.; Yuan, Z. Experimental Study on Viscosity Reducers for SAGD in Developing Extra-Heavy Oil Reservoirs. J. Petrol. Sci. Eng. 2018, 166, 25-32. https://doi.org/10.1016/j.petrol.2018.03.022
dc.relation.referencesen[10] Negi, H.; Faujdar, E.; Saleheen, R.; Singh, R.K. Viscosity Modification of Heavy Crude Oil by Using a Chitosan-Based Cationic Surfactant. Energ. Fuel. 2020, 34, 4474-4483. https://doi.org/10.1021/acs.energyfuels.0c00296
dc.relation.referencesen[11] Perez-Sanchez, J.F.; Gallegos-Villella, R.R.; Gomez-Espinoza, J., Suarez-Dominguez, E.J. Determining the Effect of a Viscosity Reducer on Water – Heavy Crude Oil Emulsions. IJEAT 2019, 8, 844-848.
dc.relation.referencesen[12] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Li, Y.; Liu, L.; Han, X. An Investigation on Environmentally Friendly Biodiesel-Based Invert Emulsion Drilling Fluid. J. Pet. Explor. Prod. Technol. 2016, 6, 505-517. https://doi.org/10.1007/s13202-015-0205-7
dc.relation.referencesen[13] Li, W.; Zhao, X.; Ji, Y.; Peng, H.; Chen, B.; Liu, L.; Han, X. Investigation of Biodiesel-Based Drilling Fluid, Part 1: Biodiesel Evaluation, Invert-Emulsion Properties, and Development of a Novel Emulsifier Package. SPE J. 2016, 21, 1755-1766. https://doi.org/10.2118/180918-PA
dc.relation.referencesen[14] dos Santos, W.R.; Caser, E.S.; Soares, E.J.; Siqueira, R.N. Drag Reduction in Turbulent Flows by Diutan Gum: A Very Stable Natural Drag Reducer. J. NonNewton. Fluid. Mech. 2020, 276, 104223. https://doi.org/10.1016/j.jnnfm.2019.104223
dc.relation.referencesen[15] Bello, E.I.; Adekanbi, I.T.; Akinbode, F.O. Production and Characterization of Coconut (Cocus Nucifera) Oil and its Methyl Ester. Eur. J. Pure Appl. Chem. 2016, 3, 38.
dc.relation.referencesen[16] Brame, S.D.; Li, L.; Mukherjee, B.; Patil, P.D.; Potisek, S.; Nguyen, Q.P. Organic Bases as Additives for Steam-Assisted Gravity Drainage. Petrol. Sci. 2019, 16, 1332-1343. https://doi.org/10.1007/s12182-019-0341-7
dc.relation.referencesen[17] Xiao, S.; Zeng, Y.; Vavra, E.D.; He, P.; Puerto, M.; Hirasaki, G.J.; Biswal, S.L. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media. Langmuir 2018, 34, 739-749. https://doi.org/10.1021/acs.langmuir.7b02766
dc.relation.referencesen[18] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-In-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Petrol. Sci. Eng. 2018, 165, 673-690. https://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.referencesen[19] Abraham, D.V.; Orodu, O.D.; Efeovbokhan, V.E.; Olabode, O.; Ojo, T.I. The Influence of Surfactant Concentration and Surfactant Type on the Interfacial Tension of Heavy Crude Oil/Brine/Surfactant System. Pet. Coal 2020, 62, 292-298.
dc.relation.referencesen[20] Hamouda, A.A.; Gupta, S. Enhancing Oil Recovery from Chalk Reservoirs by a Low-Salinity Water Flooding Mechanism and Fluid/Rock Interaction. Energies 2017, 10, 576-592. https://doi.org/10.3390/en10040576
dc.relation.referencesen[21] Liu, Y.; Hu, W.; Cao, J.; Wang, X.; Zhu, F.; Tang, Q.; Gao, W. Fluid–Rock Interaction and its Effects on the Upper Triassic Tight Sandstones in the Sichuan Basin, China: Insights from Petrographic and Geochemical Study of Carbonate Cements. Sediment. Geol. 2019, 383, 121-135. https://doi.org/10.1016/j.sedgeo.2019.01.012
dc.relation.referencesen[22] Mehraban, M.F.; Afzali, S.; Ahmadi, Z.; Mokhtari, R.; Ayatollahi, S.; Sharifi, M.; Kazemi, A.; Nasiri,M.; Fathollahi, S. Conference Proceedings, 19th European Symposium on Improved Oil Recovery, Stavanger, Norway, April 24-27, 2017; European Association of Geoscientists & Engineers: Stavanger, 2017; 1. https://doi.org/10.3997/2214-4609.201700311
dc.relation.referencesen[23] Chen, Y.; Xie, Q.; Sari, A.; Brady, P.V.; Saeedi, A. Oil/Water/Rock Wettability: Influencing Factors and Implications for Low Salinity Water Flooding in Carbonate Reservoirs. Fuel 2018, 215, 171-177. https://doi.org/10.1016/j.fuel.2017.10.031
dc.relation.referencesen[24] Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-Wetting Characterization Using Contact-Angle Measurements. Nature protocols 2018, 13, 1521-1538. https://doi.org/10.1038/s41596-018-0003-z
dc.relation.referencesen[25] Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. In Surface Science Techniques; Bracco, G.; Holst B., Eds.; Springer Series in Surface Sciences; Springer: Berlin, Heidelberg, 2013; pp 3-34. https://doi.org/10.1007/978-3-642-34243-1_1
dc.relation.referencesen[26] Jing, J.; Yin, R.; Zhu, G.; Xue, J.; Wang, S.; Wang, S. Viscosity and Contact Angle Prediction of Low Water-Containing Heavy Crude Oil Diluted with Light Oil. J. Petrol. Sci. Eng. 2019, 176, 1121-1134. https://doi.org/10.1016/j.petrol.2019.02.012
dc.relation.referencesen[27] Suárez-Domínguez, E.J.; Pérez-Sánchez, J.F.; Palacio-Pérez, A.; Rodríguez-Valdes, A.; Izquierdo-Kulich, E.; González-Santana, S. A Viscosity Bio-Reducer for Extra-Heavy Crude Oil. Petrol. Sci. Technol. 2018, 36, 166-172. https://doi.org/10.1080/10916466.2017.1413387
dc.relation.referencesen[28] Perez-Sanchez, J.F.; Diaz-Zavala, N.P.; Gonzalez-Santana, S.; Izquierdo-Kulich, E.F.; Suarez-Dominguez, E.J. Water-In-Oil Emulsions through Porous Media and the Effect of Surfactants: Theoretical Approaches. Processes 2019, 7, 620. https://doi.org/10.3390/pr7090620
dc.relation.referencesen[29] Suarez-Dominguez, E.J.; Perez-Sanchez, J.F.; Palacio-Perez A.; Izquierdo-Kulich, E.; Gonzalez-Santana, S. Flow Enhancer Influence on Non-Isothermal Systems for Heavy Crude Oil Production. Acta Universitaria [Online] 2020, 30, e2645. https://doi.org/10.15174/au.2020.2645 (accessed May 21, 2020)
dc.relation.referencesen[30] Perez-Sanchez, J.F.; Palacio-Perez, A.; Suarez-Dominguez, E.J.; Diaz-Zavala, N.P.; Izquierdo-Kulich, E. Evaluation of Surface Tension Modifiers for Crude Oil Transport Through Porous Media. J. Petrol. Sci. Eng. 2020, 192, 107319. https://doi.org/10.1016/j.petrol.2020.107319
dc.relation.referencesen[31] Luque, M.M.; Urban-Rascon, E.; Aguilera, R.F.; Aguilera, R. Mexican Unconventional Plays: Geoscience, Endowment, and Economic Considerations. SPE Reserv. Evaluation Eng. 2018, 21, 533-549. https://doi.org/10.2118/189438-PA
dc.relation.referencesen[32] Centro Nacional de Información de Hidrocarburos. Atlas Geológico Cuenca Tampico-Misantla. Centro Nacional de Información de Hidrocarburos, 2017. https://hidrocarburos.gob.mx/media/3091/atlas_geologico_cuenca_tampico-m... (accessed Oct 21, 2021)
dc.relation.referencesen[33] Chen, Z.; Zhang, Z.; Liu, D.; Chi, X.; Chen, W.; Chi, R. Swelling of Clay Minerals During the Leaching Process of Weathered Crust Elution-Deposited Rare Earth Ores by Magnesium Salts. Powder Technol. 2020, 367, 889-900. https://doi.org/10.1016/j.powtec.2020.04.008
dc.relation.referencesen[34] Wang, Y.-L.; Yan Q.-B.; Guo Z.; Guo, G.; Deng, Q.; Zhang, J.; Chen, J. Investigation of Oleate-Diethylamine-Epichlorohydrin Copolymer as a Clay Swelling Inhibitor for Shale Oil/Gas Exploration. Petrol. Chem. 2018, 58, 245-249. https://doi.org/10.1134/S0965544118030167
dc.relation.referencesen[35] Mathias, S.A.; Greenwell, H.C.; Withers, C.; Erdogan, A.R.; McElwaine, J.N.; MacMinn, C. Analytical Solution for Clay Plug Swelling Experiments. Appl. Clay Sci. 2017, 149, 75-78. https://doi.org/10.1016/j.clay.2017.07.021
dc.relation.referencesen[36] RezaeiDoust, A.; Puntervold, T.; Austad, T. Chemical Verification of the EOR Mechanism by Using Low Saline/Smart Water in Sandstone. Energy Fuels 2011, 25, 2151-2162. https://doi.org/10.1021/ef200215y
dc.relation.urihttps://doi.org/10.24201/fi.v59i1.2585
dc.relation.urihttps://doi.org/10.15446/cuad.econ.v34n65.48702
dc.relation.urihttp://sih.hidrocarburos.gob.mx/
dc.relation.urihttps://doi.org/10.5419/bjpg2017-0010
dc.relation.urihttps://doi.org/10.1201/b16559
dc.relation.urihttps://doi.org/10.1088/1755-1315/453/1/012037
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.6b02265
dc.relation.urihttps://doi.org/10.1016/j.petrol.2018.03.022
dc.relation.urihttps://doi.org/10.1021/acs.energyfuels.0c00296
dc.relation.urihttps://doi.org/10.1007/s13202-015-0205-7
dc.relation.urihttps://doi.org/10.2118/180918-PA
dc.relation.urihttps://doi.org/10.1016/j.jnnfm.2019.104223
dc.relation.urihttps://doi.org/10.1007/s12182-019-0341-7
dc.relation.urihttps://doi.org/10.1021/acs.langmuir.7b02766
dc.relation.urihttps://doi.org/10.1016/j.petrol.2018.03.014
dc.relation.urihttps://doi.org/10.3390/en10040576
dc.relation.urihttps://doi.org/10.1016/j.sedgeo.2019.01.012
dc.relation.urihttps://doi.org/10.3997/2214-4609.201700311
dc.relation.urihttps://doi.org/10.1016/j.fuel.2017.10.031
dc.relation.urihttps://doi.org/10.1038/s41596-018-0003-z
dc.relation.urihttps://doi.org/10.1007/978-3-642-34243-1_1
dc.relation.urihttps://doi.org/10.1016/j.petrol.2019.02.012
dc.relation.urihttps://doi.org/10.1080/10916466.2017.1413387
dc.relation.urihttps://doi.org/10.3390/pr7090620
dc.relation.urihttps://doi.org/10.15174/au.2020.2645
dc.relation.urihttps://doi.org/10.1016/j.petrol.2020.107319
dc.relation.urihttps://doi.org/10.2118/189438-PA
dc.relation.urihttps://hidrocarburos.gob.mx/media/3091/atlas_geologico_cuenca_tampico-m..
dc.relation.urihttps://doi.org/10.1016/j.powtec.2020.04.008
dc.relation.urihttps://doi.org/10.1134/S0965544118030167
dc.relation.urihttps://doi.org/10.1016/j.clay.2017.07.021
dc.relation.urihttps://doi.org/10.1021/ef200215y
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Cortes-Cano J., Suarez-Dominguez E., Perez-Sanchez J., Lozano-Navarro J., Palacio-Perez A., 2022
dc.subjectзмочуваність піщаної глини
dc.subjectрух рідини через пористе середовище
dc.subjectкут змочування
dc.subjectмодифікація ефективної проникності
dc.subjectclay-sand wettability
dc.subjectfluid flow through porous media
dc.subjectcontact angle
dc.subjectapparent permeability modification
dc.titleClay-Sand Wettability Evaluation for Heavy Crude Oil Mobility
dc.title.alternativeОцінка змочуваності піщаної глини для рухливості важких нафт
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n3_Cortes-Cano_J_M-Clay_Sand_Wettability_448-453.pdf
Size:
530.22 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n3_Cortes-Cano_J_M-Clay_Sand_Wettability_448-453__COVER.png
Size:
511.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: