Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars
dc.citation.epage | 220 | |
dc.citation.issue | 1 | |
dc.citation.spage | 211 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Gunka, Volodymyr | |
dc.contributor.author | Hrynchuk, Yurii | |
dc.contributor.author | Demchuk, Yuriy | |
dc.contributor.author | Donchenko, Myroslava | |
dc.contributor.author | Prysiazhnyi, Yuriy | |
dc.contributor.author | Reutskyy, Volodymyr | |
dc.contributor.author | Astakhova, Olena | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:39Z | |
dc.date.available | 2024-02-09T10:29:39Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Хімічним модифікуванням гудрону формальдегідом з використанням як каталізатора сульфатної кислоти отримано три зразки бітумного матеріалу з різними температурами розм’якшення 321, 332 і 356,4 К. Визначено груповий вуглеводневий склад сировини процесу модифікації (гудрону) та отриманих бітумів. Також здійснено FTIR-дослідження одержаних груп вуглеводнів (олив, смол та асфальтенів). Досліджено структурні перетворення та запропоновано можливий хімізм процесу модифікування гудрону формальдегідом. | |
dc.description.abstract | Three samples of bituminous material with different softening temperatures of 321, 332, and 356.4 K were obtained by the method of chemical modification of tar with formaldehyde using sulfuric acid as a catalyst. The determination of the group hydrocarbon composition was carried out for the raw materials of the modification process (tar) and the resulting bitumens. An FTIR study of the obtained groups of hydrocarbons (oil, resins, and asphaltenes) was also carried out. The structural transfor¬mations were investigated and a possible chemistry of the tar modification process with formaldehyde was proposed. | |
dc.format.extent | 211-220 | |
dc.format.pages | 10 | |
dc.identifier.citation | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars / Volodymyr Gunka, Yurii Hrynchuk, Yuriy Demchuk, Myroslava Donchenko, Yuriy Prysiazhnyi, Volodymyr Reutskyy, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 211–220. | |
dc.identifier.citationen | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars / Volodymyr Gunka, Yurii Hrynchuk, Yuriy Demchuk, Myroslava Donchenko, Yuriy Prysiazhnyi, Volodymyr Reutskyy, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 211–220. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.211 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61223 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Shukla, S.K.; Maithani, A.; Srivastava, D. Studies on the Effect of Concentration of Formaldehyde on the Synthesis of Resole-Type Epoxidized Phenolic Resin from Renewable Resource Material. Des. Monomers Polym. 2014, 17, 69-77. https://doi.org/10.1080/15685551.2013.840469 | |
dc.relation.references | [2] Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol–Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916-6924. https://doi.org/10.1021/ie070297a | |
dc.relation.references | [3] Cheng, W.-C.; Kurth, M.J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 2002, 34, 585-608. https://doi.org/10.1080/00304940209355784 | |
dc.relation.references | [4] Li, J.J. Zincke Reaction. In Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications; Springer, Cham., 2014; pp 656-658. | |
dc.relation.references | [5] Wurster, C. Die Constitution des Dinitrobenzols. Berichte der Deutschen Chemischen Gesellschaft 1874, 7, 148-152. https://doi.org/10.1002/cber.18740070154 | |
dc.relation.references | [6] Bamford, H.; Simonsen, J. CCII.–The Constitution of the Ben-zenetetracarboxylic Acids. J. Chem. Soc., Trans. 1910, 97, 1904-1909. https://doi.org/10.1039/CT9109701904 | |
dc.relation.references | [7] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin. Adhesive Obtained From Bio-ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. | |
dc.relation.references | [8] Krasinskyi, V.; Spišák, E.; Gajdoš, I.; Garbacz, T. Heat-Resistant Coatings on the Basis of Phenol-Formaldehyde Composi-tions. Materials Science Forum 2015, 818, 105-108. https://doi.org/10.4028/www.scientific.net/MSF.818.105 | |
dc.relation.references | [9] Varlan, K.Ye.; Severenchuk, I.N.; Zubenko, A.E. Malovidkhodnyy protses otrymannya butylfenolformalʹdehidnoyi smoly dlya zakhysnykh pokrytʹ. Visnyk Dnipropetrovskoho universytetu 2017, 25, 58-64. | |
dc.relation.references | [10] Yang, S.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Lignin–Phenol–Formaldehyde Resin Adhesives Prepared with Biorefinery Technic-al Lignins. J. Appl. Polym. Sci. 2015, 132, 42493. https://doi.org/10.1002/app.42493 | |
dc.relation.references | [11] Pyshyev, S.; Gunka, V.; Prysiazhnyi, Y.; Shevchuk, K.; Pattek-Janczyk, A. Study of the Oxidative Desulphurization Process of Coal with Different Metamorphism Degrees. J. Fuel Chem. Technol. 2012, 40, 129-137. https://doi.org/10.1016/S1872-5813(12)60009-7 | |
dc.relation.references | [12] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization 1. Influence of the Organic Matter. Chem. Chem. Technol. 2012, 6, 443-450. https://doi.org/10.23939/chcht06.04.443 | |
dc.relation.references | [13] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization. 2. Influence of the Inorganic Matter. Chem. Chem. Technol. 2013, 7, 327-334. https://doi.org/10.23939/chcht07.03.327 | |
dc.relation.references | [14] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934 | |
dc.relation.references | [15] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.references | [16] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429. | |
dc.relation.references | [17] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [18] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.references | [19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.references | [20] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Tech-nol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.references | [21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.references | [22] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.references | [23] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.references | [24] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456 | |
dc.relation.references | [25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206. | |
dc.relation.references | [26] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212 | |
dc.relation.references | [27] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.references | [29] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. | |
dc.relation.references | [30] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Braty-chak, M. Modified Phenol-Formaldehyde Resins and their Applica-tion in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.references | [31] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.references | [32] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.references | [33] EN 15326, Bitumen and bituminous binders. Bitumen and bituminous binders. Measurement of density and specific gravity, Capillary-stoppered pyknometer method, 2007. | |
dc.relation.references | [34] EN ISO 2592, Determination of flash and fire points - Cleveland open cup method, 2001. | |
dc.relation.references | [35] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015. | |
dc.relation.references | [36] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015. | |
dc.relation.references | [37] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015. | |
dc.relation.references | [38] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009. | |
dc.relation.references | [39] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014. | |
dc.relation.references | [40] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018. | |
dc.relation.references | [41] Marcusson, J. Der chemische Aufbau der Naturasphalte. Angew. Chem. 1916, 29, 346-351. https://doi.org/10.1002/ange.19160297303. | |
dc.relation.referencesen | [1] Shukla, S.K.; Maithani, A.; Srivastava, D. Studies on the Effect of Concentration of Formaldehyde on the Synthesis of Resole-Type Epoxidized Phenolic Resin from Renewable Resource Material. Des. Monomers Polym. 2014, 17, 69-77. https://doi.org/10.1080/15685551.2013.840469 | |
dc.relation.referencesen | [2] Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol–Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916-6924. https://doi.org/10.1021/ie070297a | |
dc.relation.referencesen | [3] Cheng, W.-C.; Kurth, M.J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 2002, 34, 585-608. https://doi.org/10.1080/00304940209355784 | |
dc.relation.referencesen | [4] Li, J.J. Zincke Reaction. In Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications; Springer, Cham., 2014; pp 656-658. | |
dc.relation.referencesen | [5] Wurster, C. Die Constitution des Dinitrobenzols. Berichte der Deutschen Chemischen Gesellschaft 1874, 7, 148-152. https://doi.org/10.1002/cber.18740070154 | |
dc.relation.referencesen | [6] Bamford, H.; Simonsen, J. CCII.–The Constitution of the Ben-zenetetracarboxylic Acids. J. Chem. Soc., Trans. 1910, 97, 1904-1909. https://doi.org/10.1039/CT9109701904 | |
dc.relation.referencesen | [7] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin. Adhesive Obtained From Bio-ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. | |
dc.relation.referencesen | [8] Krasinskyi, V.; Spišák, E.; Gajdoš, I.; Garbacz, T. Heat-Resistant Coatings on the Basis of Phenol-Formaldehyde Composi-tions. Materials Science Forum 2015, 818, 105-108. https://doi.org/10.4028/www.scientific.net/MSF.818.105 | |
dc.relation.referencesen | [9] Varlan, K.Ye.; Severenchuk, I.N.; Zubenko, A.E. Malovidkhodnyy protses otrymannya butylfenolformalʹdehidnoyi smoly dlya zakhysnykh pokrytʹ. Visnyk Dnipropetrovskoho universytetu 2017, 25, 58-64. | |
dc.relation.referencesen | [10] Yang, S.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Lignin–Phenol–Formaldehyde Resin Adhesives Prepared with Biorefinery Technic-al Lignins. J. Appl. Polym. Sci. 2015, 132, 42493. https://doi.org/10.1002/app.42493 | |
dc.relation.referencesen | [11] Pyshyev, S.; Gunka, V.; Prysiazhnyi, Y.; Shevchuk, K.; Pattek-Janczyk, A. Study of the Oxidative Desulphurization Process of Coal with Different Metamorphism Degrees. J. Fuel Chem. Technol. 2012, 40, 129-137. https://doi.org/10.1016/S1872-5813(12)60009-7 | |
dc.relation.referencesen | [12] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization 1. Influence of the Organic Matter. Chem. Chem. Technol. 2012, 6, 443-450. https://doi.org/10.23939/chcht06.04.443 | |
dc.relation.referencesen | [13] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization. 2. Influence of the Inorganic Matter. Chem. Chem. Technol. 2013, 7, 327-334. https://doi.org/10.23939/chcht07.03.327 | |
dc.relation.referencesen | [14] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934 | |
dc.relation.referencesen | [15] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.referencesen | [16] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429. | |
dc.relation.referencesen | [17] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [18] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.referencesen | [19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.referencesen | [20] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Tech-nol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.referencesen | [21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.referencesen | [22] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.referencesen | [23] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
dc.relation.referencesen | [24] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456 | |
dc.relation.referencesen | [25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206. | |
dc.relation.referencesen | [26] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212 | |
dc.relation.referencesen | [27] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.referencesen | [29] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102. | |
dc.relation.referencesen | [30] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Braty-chak, M. Modified Phenol-Formaldehyde Resins and their Applica-tion in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.referencesen | [31] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.referencesen | [32] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.referencesen | [33] EN 15326, Bitumen and bituminous binders. Bitumen and bituminous binders. Measurement of density and specific gravity, Capillary-stoppered pyknometer method, 2007. | |
dc.relation.referencesen | [34] EN ISO 2592, Determination of flash and fire points - Cleveland open cup method, 2001. | |
dc.relation.referencesen | [35] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015. | |
dc.relation.referencesen | [36] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015. | |
dc.relation.referencesen | [37] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015. | |
dc.relation.referencesen | [38] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009. | |
dc.relation.referencesen | [39] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014. | |
dc.relation.referencesen | [40] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018. | |
dc.relation.referencesen | [41] Marcusson, J. Der chemische Aufbau der Naturasphalte. Angew. Chem. 1916, 29, 346-351. https://doi.org/10.1002/ange.19160297303. | |
dc.relation.uri | https://doi.org/10.1080/15685551.2013.840469 | |
dc.relation.uri | https://doi.org/10.1021/ie070297a | |
dc.relation.uri | https://doi.org/10.1080/00304940209355784 | |
dc.relation.uri | https://doi.org/10.1002/cber.18740070154 | |
dc.relation.uri | https://doi.org/10.1039/CT9109701904 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/MSF.818.105 | |
dc.relation.uri | https://doi.org/10.1002/app.42493 | |
dc.relation.uri | https://doi.org/10.1016/S1872-5813(12)60009-7 | |
dc.relation.uri | https://doi.org/10.23939/chcht06.04.443 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.03.327 | |
dc.relation.uri | https://doi.org/10.3390/coatings12121934 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_14 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
dc.relation.uri | https://doi.org/10.23939/chcht06.02.219 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.264 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.608 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.142 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.461 | |
dc.relation.uri | https://doi.org/10.3390/ma15165693 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.04.456 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.02.212 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.1080/14680629.2020.1808518 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.03.279 | |
dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
dc.relation.uri | https://doi.org/10.1002/ange.19160297303 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Gunka V., Hrynchuk Yu., Demchuk Yu., Donchenko M., Prysiazhnyi Yu., Reutskyy V., Astakhova O., 2023 | |
dc.subject | гудрон | |
dc.subject | бітум | |
dc.subject | формальдегід | |
dc.subject | хімічне модифікування | |
dc.subject | tar | |
dc.subject | bitumen | |
dc.subject | formaldehyde | |
dc.subject | chemical modification | |
dc.title | Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars | |
dc.title.alternative | Виробництво бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 7. Дослідження структури гудронів, модифікованих формальдегідом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1