Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars

dc.citation.epage220
dc.citation.issue1
dc.citation.spage211
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorHrynchuk, Yurii
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorDonchenko, Myroslava
dc.contributor.authorPrysiazhnyi, Yuriy
dc.contributor.authorReutskyy, Volodymyr
dc.contributor.authorAstakhova, Olena
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:39Z
dc.date.available2024-02-09T10:29:39Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractХімічним модифікуванням гудрону формальдегідом з використанням як каталізатора сульфатної кислоти отримано три зразки бітумного матеріалу з різними температурами розм’якшення 321, 332 і 356,4 К. Визначено груповий вуглеводневий склад сировини процесу модифікації (гудрону) та отриманих бітумів. Також здійснено FTIR-дослідження одержаних груп вуглеводнів (олив, смол та асфальтенів). Досліджено структурні перетворення та запропоновано можливий хімізм процесу модифікування гудрону формальдегідом.
dc.description.abstractThree samples of bituminous material with different softening temperatures of 321, 332, and 356.4 K were obtained by the method of chemical modification of tar with formaldehyde using sulfuric acid as a catalyst. The determination of the group hydrocarbon composition was carried out for the raw materials of the modification process (tar) and the resulting bitumens. An FTIR study of the obtained groups of hydrocarbons (oil, resins, and asphaltenes) was also carried out. The structural transfor¬mations were investigated and a possible chemistry of the tar modification process with formaldehyde was proposed.
dc.format.extent211-220
dc.format.pages10
dc.identifier.citationProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars / Volodymyr Gunka, Yurii Hrynchuk, Yuriy Demchuk, Myroslava Donchenko, Yuriy Prysiazhnyi, Volodymyr Reutskyy, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 211–220.
dc.identifier.citationenProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars / Volodymyr Gunka, Yurii Hrynchuk, Yuriy Demchuk, Myroslava Donchenko, Yuriy Prysiazhnyi, Volodymyr Reutskyy, Olena Astakhova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 211–220.
dc.identifier.doidoi.org/10.23939/chcht17.01.211
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61223
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Shukla, S.K.; Maithani, A.; Srivastava, D. Studies on the Effect of Concentration of Formaldehyde on the Synthesis of Resole-Type Epoxidized Phenolic Resin from Renewable Resource Material. Des. Monomers Polym. 2014, 17, 69-77. https://doi.org/10.1080/15685551.2013.840469
dc.relation.references[2] Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol–Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916-6924. https://doi.org/10.1021/ie070297a
dc.relation.references[3] Cheng, W.-C.; Kurth, M.J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 2002, 34, 585-608. https://doi.org/10.1080/00304940209355784
dc.relation.references[4] Li, J.J. Zincke Reaction. In Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications; Springer, Cham., 2014; pp 656-658.
dc.relation.references[5] Wurster, C. Die Constitution des Dinitrobenzols. Berichte der Deutschen Chemischen Gesellschaft 1874, 7, 148-152. https://doi.org/10.1002/cber.18740070154
dc.relation.references[6] Bamford, H.; Simonsen, J. CCII.–The Constitution of the Ben-zenetetracarboxylic Acids. J. Chem. Soc., Trans. 1910, 97, 1904-1909. https://doi.org/10.1039/CT9109701904
dc.relation.references[7] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin. Adhesive Obtained From Bio-ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105.
dc.relation.references[8] Krasinskyi, V.; Spišák, E.; Gajdoš, I.; Garbacz, T. Heat-Resistant Coatings on the Basis of Phenol-Formaldehyde Composi-tions. Materials Science Forum 2015, 818, 105-108. https://doi.org/10.4028/www.scientific.net/MSF.818.105
dc.relation.references[9] Varlan, K.Ye.; Severenchuk, I.N.; Zubenko, A.E. Malovidkhodnyy protses otrymannya butylfenolformalʹdehidnoyi smoly dlya zakhysnykh pokrytʹ. Visnyk Dnipropetrovskoho universytetu 2017, 25, 58-64.
dc.relation.references[10] Yang, S.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Lignin–Phenol–Formaldehyde Resin Adhesives Prepared with Biorefinery Technic-al Lignins. J. Appl. Polym. Sci. 2015, 132, 42493. https://doi.org/10.1002/app.42493
dc.relation.references[11] Pyshyev, S.; Gunka, V.; Prysiazhnyi, Y.; Shevchuk, K.; Pattek-Janczyk, A. Study of the Oxidative Desulphurization Process of Coal with Different Metamorphism Degrees. J. Fuel Chem. Technol. 2012, 40, 129-137. https://doi.org/10.1016/S1872-5813(12)60009-7
dc.relation.references[12] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization 1. Influence of the Organic Matter. Chem. Chem. Technol. 2012, 6, 443-450. https://doi.org/10.23939/chcht06.04.443
dc.relation.references[13] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization. 2. Influence of the Inorganic Matter. Chem. Chem. Technol. 2013, 7, 327-334. https://doi.org/10.23939/chcht07.03.327
dc.relation.references[14] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.references[15] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.references[16] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429.
dc.relation.references[17] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[18] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219
dc.relation.references[19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
dc.relation.references[20] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Tech-nol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[22] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
dc.relation.references[23] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.references[24] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.references[25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206.
dc.relation.references[26] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
dc.relation.references[27] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.references[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.references[29] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102.
dc.relation.references[30] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Braty-chak, M. Modified Phenol-Formaldehyde Resins and their Applica-tion in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.references[31] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[32] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[33] EN 15326, Bitumen and bituminous binders. Bitumen and bituminous binders. Measurement of density and specific gravity, Capillary-stoppered pyknometer method, 2007.
dc.relation.references[34] EN ISO 2592, Determination of flash and fire points - Cleveland open cup method, 2001.
dc.relation.references[35] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
dc.relation.references[36] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
dc.relation.references[37] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
dc.relation.references[38] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
dc.relation.references[39] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014.
dc.relation.references[40] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
dc.relation.references[41] Marcusson, J. Der chemische Aufbau der Naturasphalte. Angew. Chem. 1916, 29, 346-351. https://doi.org/10.1002/ange.19160297303.
dc.relation.referencesen[1] Shukla, S.K.; Maithani, A.; Srivastava, D. Studies on the Effect of Concentration of Formaldehyde on the Synthesis of Resole-Type Epoxidized Phenolic Resin from Renewable Resource Material. Des. Monomers Polym. 2014, 17, 69-77. https://doi.org/10.1080/15685551.2013.840469
dc.relation.referencesen[2] Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and Physical Changes in Phenol–Formaldehyde Resol Resin, as a Function of the Degree of Condensation of the Resol Solution. Ind. Eng. Chem. Res. 2007, 46, 6916-6924. https://doi.org/10.1021/ie070297a
dc.relation.referencesen[3] Cheng, W.-C.; Kurth, M.J. The Zincke Reaction. A Review. Org. Prep. Proced. Int. 2002, 34, 585-608. https://doi.org/10.1080/00304940209355784
dc.relation.referencesen[4] Li, J.J. Zincke Reaction. In Name Reactions. A Collection of Detailed Mechanisms and Synthetic Applications; Springer, Cham., 2014; pp 656-658.
dc.relation.referencesen[5] Wurster, C. Die Constitution des Dinitrobenzols. Berichte der Deutschen Chemischen Gesellschaft 1874, 7, 148-152. https://doi.org/10.1002/cber.18740070154
dc.relation.referencesen[6] Bamford, H.; Simonsen, J. CCII.–The Constitution of the Ben-zenetetracarboxylic Acids. J. Chem. Soc., Trans. 1910, 97, 1904-1909. https://doi.org/10.1039/CT9109701904
dc.relation.referencesen[7] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin. Adhesive Obtained From Bio-ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105.
dc.relation.referencesen[8] Krasinskyi, V.; Spišák, E.; Gajdoš, I.; Garbacz, T. Heat-Resistant Coatings on the Basis of Phenol-Formaldehyde Composi-tions. Materials Science Forum 2015, 818, 105-108. https://doi.org/10.4028/www.scientific.net/MSF.818.105
dc.relation.referencesen[9] Varlan, K.Ye.; Severenchuk, I.N.; Zubenko, A.E. Malovidkhodnyy protses otrymannya butylfenolformalʹdehidnoyi smoly dlya zakhysnykh pokrytʹ. Visnyk Dnipropetrovskoho universytetu 2017, 25, 58-64.
dc.relation.referencesen[10] Yang, S.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Lignin–Phenol–Formaldehyde Resin Adhesives Prepared with Biorefinery Technic-al Lignins. J. Appl. Polym. Sci. 2015, 132, 42493. https://doi.org/10.1002/app.42493
dc.relation.referencesen[11] Pyshyev, S.; Gunka, V.; Prysiazhnyi, Y.; Shevchuk, K.; Pattek-Janczyk, A. Study of the Oxidative Desulphurization Process of Coal with Different Metamorphism Degrees. J. Fuel Chem. Technol. 2012, 40, 129-137. https://doi.org/10.1016/S1872-5813(12)60009-7
dc.relation.referencesen[12] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization 1. Influence of the Organic Matter. Chem. Chem. Technol. 2012, 6, 443-450. https://doi.org/10.23939/chcht06.04.443
dc.relation.referencesen[13] Pyshyev, S.; Gunka, V.; Astakhova, O.; Prysiazhnyi, Y.; Bratychak, M. Effect of Coal Quality on its Desulphurization. 2. Influence of the Inorganic Matter. Chem. Chem. Technol. 2013, 7, 327-334. https://doi.org/10.23939/chcht07.03.327
dc.relation.referencesen[14] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
dc.relation.referencesen[15] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.referencesen[16] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal. 2020, 62, 420-429.
dc.relation.referencesen[17] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[18] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 6, 219-223. https://doi.org/10.23939/chcht06.02.219
dc.relation.referencesen[19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruc-tion of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
dc.relation.referencesen[20] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Tech-nol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[21] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[22] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
dc.relation.referencesen[23] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.referencesen[24] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.referencesen[25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206.
dc.relation.referencesen[26] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
dc.relation.referencesen[27] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesen[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesen[29] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95-102.
dc.relation.referencesen[30] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Braty-chak, M. Modified Phenol-Formaldehyde Resins and their Applica-tion in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
dc.relation.referencesen[31] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[32] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[33] EN 15326, Bitumen and bituminous binders. Bitumen and bituminous binders. Measurement of density and specific gravity, Capillary-stoppered pyknometer method, 2007.
dc.relation.referencesen[34] EN ISO 2592, Determination of flash and fire points - Cleveland open cup method, 2001.
dc.relation.referencesen[35] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
dc.relation.referencesen[36] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
dc.relation.referencesen[37] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
dc.relation.referencesen[38] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
dc.relation.referencesen[39] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014.
dc.relation.referencesen[40] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
dc.relation.referencesen[41] Marcusson, J. Der chemische Aufbau der Naturasphalte. Angew. Chem. 1916, 29, 346-351. https://doi.org/10.1002/ange.19160297303.
dc.relation.urihttps://doi.org/10.1080/15685551.2013.840469
dc.relation.urihttps://doi.org/10.1021/ie070297a
dc.relation.urihttps://doi.org/10.1080/00304940209355784
dc.relation.urihttps://doi.org/10.1002/cber.18740070154
dc.relation.urihttps://doi.org/10.1039/CT9109701904
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.818.105
dc.relation.urihttps://doi.org/10.1002/app.42493
dc.relation.urihttps://doi.org/10.1016/S1872-5813(12)60009-7
dc.relation.urihttps://doi.org/10.23939/chcht06.04.443
dc.relation.urihttps://doi.org/10.23939/chcht07.03.327
dc.relation.urihttps://doi.org/10.3390/coatings12121934
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_14
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.23939/chcht06.02.219
dc.relation.urihttps://doi.org/10.23939/chcht14.02.264
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.23939/chcht16.03.461
dc.relation.urihttps://doi.org/10.3390/ma15165693
dc.relation.urihttps://doi.org/10.23939/chcht12.04.456
dc.relation.urihttps://doi.org/10.23939/chcht13.02.212
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://doi.org/10.23939/chcht07.03.279
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.urihttps://doi.org/10.1002/ange.19160297303
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Gunka V., Hrynchuk Yu., Demchuk Yu., Donchenko M., Prysiazhnyi Yu., Reutskyy V., Astakhova O., 2023
dc.subjectгудрон
dc.subjectбітум
dc.subjectформальдегід
dc.subjectхімічне модифікування
dc.subjecttar
dc.subjectbitumen
dc.subjectformaldehyde
dc.subjectchemical modification
dc.titleProduction of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars
dc.title.alternativeВиробництво бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 7. Дослідження структури гудронів, модифікованих формальдегідом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Gunka_V-Production_of_Bitumen_Modified_211-220.pdf
Size:
679.9 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Gunka_V-Production_of_Bitumen_Modified_211-220__COVER.png
Size:
499 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: