Розробка методу виявлення аномалій у часових ГНСС-рядах з використанням алгоритмів машинного навчання

dc.citation.epage75
dc.citation.issueІІ(48)
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва : збірник наукових праць
dc.citation.spage67
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГайдусь, О.
dc.contributor.authorБрусак, І.
dc.contributor.authorHaidus, O.
dc.contributor.authorBrusak, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-04T09:24:11Z
dc.date.created2024-08-21
dc.date.issued2024-08-21
dc.description.abstractМетою цього дослідження є розроблення методу виявлення аномалій у часових рядах даних ГНСС з використанням алгоритмів машинного навчання. Метод забезпечуватиме ідентифікацію аномалій, пов’язаних із сейсмічною активністю, що сприятиме підвищенню ефективності моніторингу та прогнозування сейсмічних подій. Об’єктом дослідження є часові ряди даних ГНСС, отримані з різних станцій, розташованих у сейсмічно активних регіонах. Дані охоплюють щоденний набір просторових координат та інших параметрів, що дають змогу аналізувати зміну положення об’єктів у часі. Методика. Для досягнення поставленої мети використано алгоритм машинного навчання Isolation Forest, який реалізовано у середовищі Python. Методика дослідження передбачає кілька етапів. Попередня обробка даних: очищення даних від шумів та відхилень, нормалізація. Вибір параметрів алгоритму: налаштування гіперпараметрів моделі Isolation Forest для оптимальної роботи з ГНСС- даними. Навчання моделі: використання тренувального набору даних для навчання алгоритму Isolation Forest. Виявлення аномалій: застосування навченої моделі до тестових даних для ідентифікації потенційних аномалій. Аналіз результатів: оцінювання виявлених аномалій та їх порівняння з відомими сейсмічними подіями для підтвердження ефективності методу. Результати. Розроблений метод апробовано на даних чотирьох ГНСС- станцій, розташованих у сейсмічно активних регіонах Японії. Результати показали, що алгоритм Isolation Forest успішно виявив аномалії, які збігаються із відомими сейсмічними подіями. Зокрема, встановлено, що: алгоритм виявив 6,9–23,8 % сейсмічних подій з точністю до трьох днів. Ефективність виявлення аномалій може залежати від географічного розташування та технічних характеристик ГНСС-станцій. Наукова новизна полягає в адаптації сучасного методу машинного навчання, а саме алгоритму Isolation Forest, для виявлення аномалій у часових рядах даних ГНСС. Це дає змогу автоматизувати процес виявлення аномалій, підвищити його точність та ефективність. Практична значущість розробленого методу полягає у можливості його використання для моніторингу та прогнозування сейсмічної активності. Метод можна застосовувати для запобігання сейсмічним подіям, що сприятиме зменшенню ризику людських жертв та матеріальних збитків, а також для моніторингу стабільності великих інженерних споруд, розташованих у сейсмічно активних регіонах.
dc.description.abstractThe purpose of this study is to develop a method for detecting anomalies in GNSS time series using machine learning algorithms. The method should ensure the identification of anomalies associated with seismic activity, which will help to improve the efficiency of monitoring and forecasting seismic events. Object of study is a GNSS time series data obtained from various stations located in seismically active regions. The data include daily 3 dimensional coordinates and other parameters that allow analyzing the change in the position of objects over time. Methodology. To achieve the goal, the Isolation Forest machine learning algorithm was used implemented in Python. The research methodology includes the following steps: Data pre-processing: data cleaning from noise and deviations, normalization. Selection of algorithm parameters: setting up hyperparameters of the IF model for optimal work with GNSS data. Model training: use a training dataset to train the IF algorithm. Anomaly detection: applying the trained model to test data to identify potential anomalies. Analysis of the results: evaluation of the detected anomalies and their comparison with known seismic events to confirm the effectiveness of the method. Results. The developed method was tested on data from four GNSS stations located in seismically active regions of Japan. The results showed that the Isolation Forest algorithm successfully detected anomalies that coincide with known seismic events. In particular, it was found that: the algorithm identified between 6.9 % and 23.8 % of seismic events in the “Excellent” category; The effectiveness of anomaly detection may depend on the geographical location and technical characteristics of GNSS stations. The scientific novelty of the study is the adaptation of a modern machine learning method, namely the Isolation Forest algorithm, to detect anomalies in GNSS time series. This allows automating the anomaly detection process, increasing its accuracy and efficiency. The practical significance of the developed method lies in the possibility of its use for monitoring and forecasting seismic activity. The method can be used to prevent seismic events, which will help reduce the risk of human casualties and material damage. The method can also be used to monitor the stability of large engineering structures located in seismically active regions.
dc.format.extent67-75
dc.format.pages9
dc.identifier.citationГайдусь О. Розробка методу виявлення аномалій у часових ГНСС-рядах з використанням алгоритмів машинного навчання / О. Гайдусь, І. Брусак // Сучасні досягнення геодезичної науки та виробництва : збірник наукових праць. — Львів : Видавництво Львівської політехніки, 2024. — № ІІ(48). — С. 67–75.
dc.identifier.citation2015Гайдусь О., Брусак І. Розробка методу виявлення аномалій у часових ГНСС-рядах з використанням алгоритмів машинного навчання // Сучасні досягнення геодезичної науки та виробництва : збірник наукових праць, Львів. 2024. № ІІ(48). С. 67–75.
dc.identifier.citationenAPAHaidus, O., & Brusak, I. (2024). Rozrobka metodu vyiavlennia anomalii u chasovykh HNSS-riadakh z vykorystanniam alhorytmiv mashynnoho navchannia [Development of the method for detecting anomalies in GNSS time series using machine learning algorithms]. Modern Achievements of Geodesic Science and Industry(II(48)), 67-75. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOHaidus O., Brusak I. (2024) Rozrobka metodu vyiavlennia anomalii u chasovykh HNSS-riadakh z vykorystanniam alhorytmiv mashynnoho navchannia [Development of the method for detecting anomalies in GNSS time series using machine learning algorithms]. Modern Achievements of Geodesic Science and Industry (Lviv), no II(48), pp. 67-75 [in Ukrainian].
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/117173
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва : збірник наукових праць, ІІ(48), 2024
dc.relation.ispartofModern Achievements of Geodesic Science and Industry, ІІ(48), 2024
dc.relation.referencesГайдусь О. А., Брусак І. В. (2024). Розробка методу
dc.relation.referencesвиявлення аномалій у часових ГНСС-рядах з ви-
dc.relation.referencesкористанням алгоритмів машинного навчання.
dc.relation.referencesГеофорум-2024: матеріали міжнародної науково-
dc.relation.referencesтехнічної конференції, 10–12 квітня 2024 р., Львів,
dc.relation.referencesБрюховичі, Україна. C. 87–90.
dc.relation.referencesТретяк К, Корлятович Т., Брусак І., Смірнова О.
dc.relation.referencesДиференціація кінематики греблі Дністровської
dc.relation.referencesГЕС-1 (за даними ГНСС-моніторингу просторових
dc.relation.referencesзміщень) Сучасні досягнення геодезичної науки та
dc.relation.referencesвиробництва, 57–66. DOI: doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.referencesBlewitt, G., Hammond, W. C., & Kreemer, C. (2018).
dc.relation.referencesHarnessing the GPS data explosion for interdisciplinary
dc.relation.referencesscience. Eos, 99. https://doi.org/10.1029/2018EO104623
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning,45(1), 5–32. https://doi.org/10.1023/A:1010933404324 Brusak, I., & Tretyak, K. (2021). On the impact of nontidal
dc.relation.referencesatmospheric loading on the GNSS stations of
dc.relation.referencesregional networks and engineering facilities. In International
dc.relation.referencesConference of Young Professionals “Geo-
dc.relation.referencesTerrace-2021”. European Association of Geoscientists
dc.relation.references& Engineers. https://doi.org/10.3997/2214-4609.20215K3013
dc.relation.referencesDach, R., Lutz, S., Walser, P., & Fridez, P. (2015).
dc.relation.referencesBernese GNSS software version 5.2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
dc.relation.referencesLearning. MIT Press. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
dc.relation.referencesmemory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
dc.relation.referencesHofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E.(2008). GNSS – Global Navigation Satellite Systems:
dc.relation.referencesGPS, GLONASS, Galileo, and more. Springer.
dc.relation.referencesLi, Z., Lu, T., Yu, K., & Wang, J. (2023). Interpolation of
dc.relation.referencesGNSS Position Time Series Using GBDT, XGBoost,
dc.relation.referencesand RF Machine Learning Algorithms and Models
dc.relation.referencesError Analysis. Remote Sensing, 15(18), 4374.https://www.mdpi.com/2072-4292/15/18/4374
dc.relation.referencesLiu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation-
dc.relation.referencesBased Anomaly Detection. ACM Transactions on
dc.relation.referencesKnowledge Discovery from Data, 6(1), Article No.: 3,1–39. https://doi.org/10.1145/2133360.2133363
dc.relation.referencesLiu, Y., & Morton, Y. J. (2022). Improved automatic
dc.relation.referencesdetection of GPS satellite oscillator anomaly using amachine learning algorithm. NAVIGATION: Journal
dc.relation.referencesof the Institute of Navigation, 69(1).
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
dc.relation.referencesThirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
dc.relation.referencesWeiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
dc.relation.referencesCournapeau, D., Brucher, M., Perrot, M., &
dc.relation.referencesDuchesnay, E. (2011). Scikit-learn: Machine Learning
dc.relation.referencesin Python. Journal of Machine Learning Research,12, 2825–2830.
dc.relation.referencesQuinlan, J. R. (1986). Induction of decision trees.
dc.relation.referencesMachine Learning, 1(1), 81–106.
dc.relation.referencesSantamaría-Gómez, A. (2019). SARI: interactive GNSS position time series analysis software. GPS Solutions,23(2), 1–6. https://doi.org/10.1007/s10291-019-0846-y Schmidhuber, J. (2015). Deep learning in neural networks:
dc.relation.referencesAn overview. Neural Networks, 61, 85–117.
dc.relation.referencesTretyak, K. R., & Brusak, І. (2020). The research of
dc.relation.referencesinterrelation between seismic activity and modern
dc.relation.referenceshorizontal movements of the Carpathian-Balkan
dc.relation.referencesregion based on the data from permanent GNSS
dc.relation.referencesstations. Geodynamics, 1, 28. https://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesTretyak, K., & Brusak, I. (2021). Method for detecting
dc.relation.referencesshort-term displacements of the Earth’s surface by
dc.relation.referencesstatistical analysis of GNSS time series. Geodesy,
dc.relation.referencesCartography, and Aerial Photography, 93(1), 27–34.
dc.relation.referenceshttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesWu, D., Yan, H., & Shen, Y. (2017). TSAnalyzer, a
dc.relation.referencesGNSS time series analysis software. GPS Solutions,21(3), 1389–1394. https://doi.org/10.1007/s10291-017-0637-2
dc.relation.referencesenBlewitt, G., Hammond, W. C., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science.
dc.relation.referencesenEos, 99. https://doi.org/10.1029/2018EO104623
dc.relation.referencesenBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
dc.relation.referencesenBrusak, I., & Tretyak, K. (2021). On the impact of non-tidal atmospheric loading on the GNSS stations of regional
dc.relation.referencesennetworks and engineering facilities. In International Conference of Young Professionals “GeoTerrace-2021”.
dc.relation.referencesenEuropean Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3013
dc.relation.referencesenDach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2.
dc.relation.referencesenGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
dc.relation.referencesenHaidus O., Brusak I. (2024) Development of a method for detecting anomalies in GNSS time series using machine
dc.relation.referencesenlearning algorithms. Geoforum-2024: materials of the international scientific and technical conference, Lviv-
dc.relation.referencesenBryukhovychy Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.https://doi.org/10.1162/neco.1997.9.8.1735
dc.relation.referencesenHofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – Global Navigation Satellite Systems: GPS,
dc.relation.referencesenGLONASS, Galileo, and more. Springer.
dc.relation.referencesenLi, Z., Lu, T., Yu, K., & Wang, J. (2023). Interpolation of GNSS Position Time Series Using GBDT, XGBoost, and RF
dc.relation.referencesenMachine Learning Algorithms and Models Error Analysis. Remote Sensing, 15(18), 4374.
dc.relation.referencesenhttps://www.mdpi.com/2072-4292/15/18/4374
dc.relation.referencesenLiu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation-Based Anomaly Detection. ACM Transactions on Knowledge
dc.relation.referencesenDiscovery from Data, 6(1), Article No.: 3, 1–39. https://doi.org/10.1145/2133360.2133363
dc.relation.referencesenLiu, Y., & Morton, Y. J. (2022). Improved automatic detection of GPS satellite oscillator anomaly using a machine
dc.relation.referencesenlearning algorithm. NAVIGATION: Journal of the Institute of Navigation, 69(1).
dc.relation.referencesenPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
dc.relation.referencesenDubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikitlearn:
dc.relation.referencesenMachine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
dc.relation.referencesenQuinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
dc.relation.referencesenSantamaría-Gómez, A. (2019). SARI: interactive GNSS position time series analysis software. GPS Solutions, 23(2), 1–6. https://doi.org/10.1007/s10291-019-0846-y Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
dc.relation.referencesenTretyak K, Korlyatovych T., Brusak I., Smirnova O. (2021). Differentiation of kinematics of the Dnister HPP-1 dam
dc.relation.referencesen(based on the data of GNSS monitoring of spatial displacements). Modern achievements of geodetic science and
dc.relation.referencesenindustry. DOI: doi.org/10.33841/1819-1339-2-42-57-66
dc.relation.referencesenTretyak, K. R., & Brusak, І. (2020). The research of interrelation between seismic activity and modern horizontal
dc.relation.referencesenmovements of the Carpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 1, 28.
dc.relation.referencesenhttps://doi.org/10.23939/jgd2020.01.005
dc.relation.referencesenTretyak, K., & Brusak, I. (2021). Method for detecting short-term displacements of the Earth's surface by statistical
dc.relation.referencesenanalysis of GNSS time series. Geodesy, Cartography, and Aerial Photography, 93(1), 27–34.
dc.relation.referencesenhttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesenWu, D., Yan, H., & Shen, Y. (2017). TSAnalyzer, a GNSS time series analysis software. GPS Solutions, 21(3), 1389–1394. https://doi.org/10.1007/s10291-017-0637-2
dc.relation.urihttps://doi.org/10.1029/2018EO104623
dc.relation.urihttps://doi.org/10.1023/A:1010933404324
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K3013
dc.relation.urihttps://doi.org/10.1162/neco.1997.9.8.1735
dc.relation.urihttps://www.mdpi.com/2072-4292/15/18/4374
dc.relation.urihttps://doi.org/10.1145/2133360.2133363
dc.relation.urihttps://doi.org/10.1007/s10291-019-0846-y
dc.relation.urihttps://doi.org/10.23939/jgd2020.01.005
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.urihttps://doi.org/10.1007/s10291-017-0637-2
dc.rights.holder© Національний університет „Львівська політехніка“, 2024; © Західне геодезичне товариство, 2024
dc.subjectчасові ряди ГНСС
dc.subjectвиявлення аномалій
dc.subjectізоляційний ліс
dc.subjectсейсмічна активність
dc.subjectмашинне навчання
dc.subjectGNSS time series
dc.subjectanomalies detection
dc.subjectIsolation Forest
dc.subjectseismic activity
dc.subjectmachine learning
dc.subject.udc528.22
dc.subject.udc551.242
dc.titleРозробка методу виявлення аномалій у часових ГНСС-рядах з використанням алгоритмів машинного навчання
dc.title.alternativeDevelopment of the method for detecting anomalies in GNSS time series using machine learning algorithms
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024nII_48__Haidus_O-Development_of_the_method_67-75.pdf
Size:
961.11 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: