Дослідження сонячних колекторів, інтегрованих у конструкцію скляного фасаду будівлі/споруди: необхідність та особливості

dc.citation.epage46
dc.citation.issue1
dc.citation.spage38
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВенгрин, І.
dc.contributor.authorVenhryn, Iryna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-05-07T09:33:43Z
dc.date.available2020-05-07T09:33:43Z
dc.date.created2019-03-23
dc.date.issued2019-03-23
dc.description.abstractПроаналізовано необхідність розроблення сонячних колекторів, інтегрованих у конструкцію будівлі/споруди скляного фасаду. Обґрунтовано необхідність розвитку в Україні відновлюваних джерел енергії за рахунок параметра енергоємності валового внутрішнього продукту України та фізичного зношення установок в паливно-енергетичному комплексі. Обґрунтовано, що сонячна енергетика як один з видів загальнодоступних ресурсів у сфері альтернативних технологій має перспективи розвитку. В праці знайдено нові технологічні рішення, що дають змогу поєднати сонячне електро- і теплопостачання з урахуванням тенденції еволюції скляних фасадів. Для дослідження описано методи випробувань сонячних колекторів і фотоелементів відповідно до нормативної літератури. Основні критерії, що впливають на коефіцієнт корисної дії в конструкції, такі: інтенсивність випромінювання сонячної енергії, температура навколишнього середовища, конструктивні особливості та встановлені експлуатаційні характеристики сонячного колектора.
dc.description.abstractThe work is devoted to the analysis of the need for the development of solar collectors integrated into the design of the building / structure glass facade. In particular, the necessity for Ukraine to develop renewable energy sources through the parameter of energy intensity of the Ukraine gross domestic product and the physical wear of the installation in fuel-energy complex. It was analyzed that the solar energy as one of the types of generally available resources in the field of alternative technologies has been prospects for development. Through the using of very small amount of solar energy installations in comparison with the solar energy volume that receives the Earth's surface relative to energy consumption on Earth, it can be seen the prospects of such resource. It has been noted that the territory of Ukraine receives a sufficient amount of solar energy for its use by solar installations. In this paper, conducts the search of new alternative technological solutions that allow to combine the installation of solar eletro- and heat supply with the design of the glass facade in view of the trend of glass facades evolution in developed countries. Test methods of solar collectors and solar cells according to the normative literature are described for the research. The main criterias that determine the coefficient of performance parameter are: the intensity of solar energy radiation, the ambient temperature, the design features of the solar collector, the initially established operating the solar collector characteristics. The factors that should have a significant impact on the efficiency of the design are determined for the laboratory stand study. In particular: the distance between the solar cell and the solar collector; the simulated intensity flow of thermal energy; the angle between active surface of the solar collector and the projection of the heat flow direction in the vertical plane of the solar collector; heat carrier flow rate installed in the solar heating system; air velocity; the angle between active surface of the solar collector and the projection of the wind flow direction in the vertical plane of the solar collector; the angle between the solar collector surface and the projection of the heat flow direction in the horizontal plane of the solar collector.
dc.format.extent38-46
dc.format.pages9
dc.identifier.citationВенгрин І. Дослідження сонячних колекторів, інтегрованих у конструкцію скляного фасаду будівлі/споруди: необхідність та особливості / І. Венгрин // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 38–46.
dc.identifier.citationenVenhryn I. Research of solar collectors integrated into the design of the building/structure glass facade: necessity and features / Iryna Venhryn // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 1. — No 1. — P. 38–46.
dc.identifier.issn2707-1057
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/49571
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (1), 2019
dc.relation.referencesSmenkovskyi, A. Yu., Vorontsov, S. B., & Biehun S. V. (2012). Threats to Ukraine's energy security in the
dc.relation.referencesface of increasing competition in global and regional energy markets. NISS, Kyiv, 136. (in Ukrainian)
dc.relation.referencesMysak, Y. S. (2014). Solar energy: theory and practice. Lviv, 340. (in Ukrainian)
dc.relation.referencesUkraine 2030 (2017). The doctrine of balanced development. Calvaria, Lviv, 164. (in Ukrainian)
dc.relation.referencesEnergy (2019): History, present and future. Retrieved from http://energetika.in.ua (11.2019). (in Ukrainian)
dc.relation.referencesPivniak, H. H., Shkrabets, F. P. (2013). Alternative energy in Ukraine. NGU, Dnipro, 109. (in Ukrainian)
dc.relation.referencesЕuropean Photovoltaic Industry Association (2011), SG6: Solar photovoltaic electricity empowering the world.
dc.relation.referencesGreenpeace International, 6. (in English)
dc.relation.referencesNaraievskyi, S. V. (2017). Comparative characteristics of the efficiency of solar energy in the leading countries
dc.relation.referencesof the world. Mukachevo state University, 10. (in Ukrainian)
dc.relation.referencesChwieduk, D. (2014). Solar Energy in Buildings. Thermal Balance for Efficient Heating and Cooling, USA, 362. (in English)
dc.relation.referencesZapryvoda, V. I. (2002). Geometric modeling of solar radiation receipt on the surface of spatial coatings of
dc.relation.referencesarchitectural objects (Doctoral dissertation). Kyiv. (in Ukrainian)
dc.relation.referencesMathiesen, B. V., Lund, H., & Wenzel, H. (2015). Smart energy systems for coherent 100% renewable energy
dc.relation.referencesand transport solutions. Applied Energy, 145, 139–154. (in English)
dc.relation.referencesSig Chai, D., Wena, J. Z., Nathwani, J. (2013). Simulation of cogeneration within the concept of smart energy
dc.relation.referencesnetworks. Energy Convers Manage, 75, 453–465. (in English)
dc.relation.referencesLund, H., Andersen, A. N., & Connolly, D. (2012). From electricity smart grids to smart energy systems – a
dc.relation.referencesmarket operation based approach and understanding. Energy, 42, 96–102. (in English)
dc.relation.referencesNakashydze, L. V., Shevchenko, M. V. (2017). Solar collectors – energy-active fences as an element of the air
dc.relation.referencesconditioning system of buildings. Construction, materials science, mechanical engineering, 99. (in Ukrainian)
dc.relation.referencesKuvshynov, V. V. (2013). Methods for calculating and improving the efficiency of thermal photoelectric
dc.relation.referencesinstallations. SNUNEI, Sevastopol, 2 (46), 166–171. (in Ukrainian)
dc.relation.referencesFryd, S. E. (1988). Methods of thermal testing of solar collectors. Moscow, JIHT USSR Academy of sciences,
dc.relation.referencesp. 57. (in Russian)
dc.relation.referencesYatsuk, V. O., Malachivskyi, P. S. (2008). Methods for improving measurement accuracy. ‘Beskydbit’, Lviv, 368. (in Ukrainian)
dc.relation.referencesVasylykha, Kh. V. (2017). Improvement of the regulatory and technical base for testing solar converters
dc.relation.references(Doctoral dissertation). Lviv, 203. (in Ukrainian)
dc.relation.referencesZhmakyn, L. Y., Kozyrev, Y. V., Kriukov, A. A. (2013). Solar water heaters made of textile materials.
dc.relation.referencesApplication of new textile and composite materials in technical textiles: scientific and practical conference 2013.
dc.relation.referencesKSTU, Kazan, 199. (in Russian)
dc.relation.referencesShapoval, S. P. (2010). Efficiency of the ‘delta system’ of flat solar collectors at different angles of their
dc.relation.referencesinstallation. Bulletin of the National University, Lviv, 664, 331–335. (in Ukrainian)
dc.relation.referencesPona, O. M. (2018). Improving the efficiency of a combined heat supply system with a solar roof (Doctoral
dc.relation.referencesdissertation). Lviv, 200. (in Ukrainian)
dc.relation.referencesShapoval, S. P. (2010). Patent of Ukraine 53370. Kyiv: State Patent Office of Ukraine. (in Ukrainian)
dc.relation.referencesDaffy, Dzh. A., Bekman U. A. (1977). Thermal processes using solar energy. Moscow, Myr, 420. (in Russian)
dc.relation.referencesenSmenkovskyi, A. Yu., Vorontsov, S. B., & Biehun S. V. (2012). Threats to Ukraine's energy security in the
dc.relation.referencesenface of increasing competition in global and regional energy markets. NISS, Kyiv, 136. (in Ukrainian)
dc.relation.referencesenMysak, Y. S. (2014). Solar energy: theory and practice. Lviv, 340. (in Ukrainian)
dc.relation.referencesenUkraine 2030 (2017). The doctrine of balanced development. Calvaria, Lviv, 164. (in Ukrainian)
dc.relation.referencesenEnergy (2019): History, present and future. Retrieved from http://energetika.in.ua (11.2019). (in Ukrainian)
dc.relation.referencesenPivniak, H. H., Shkrabets, F. P. (2013). Alternative energy in Ukraine. NGU, Dnipro, 109. (in Ukrainian)
dc.relation.referencesenEuropean Photovoltaic Industry Association (2011), SG6: Solar photovoltaic electricity empowering the world.
dc.relation.referencesenGreenpeace International, 6. (in English)
dc.relation.referencesenNaraievskyi, S. V. (2017). Comparative characteristics of the efficiency of solar energy in the leading countries
dc.relation.referencesenof the world. Mukachevo state University, 10. (in Ukrainian)
dc.relation.referencesenChwieduk, D. (2014). Solar Energy in Buildings. Thermal Balance for Efficient Heating and Cooling, USA, 362. (in English)
dc.relation.referencesenZapryvoda, V. I. (2002). Geometric modeling of solar radiation receipt on the surface of spatial coatings of
dc.relation.referencesenarchitectural objects (Doctoral dissertation). Kyiv. (in Ukrainian)
dc.relation.referencesenMathiesen, B. V., Lund, H., & Wenzel, H. (2015). Smart energy systems for coherent 100% renewable energy
dc.relation.referencesenand transport solutions. Applied Energy, 145, 139–154. (in English)
dc.relation.referencesenSig Chai, D., Wena, J. Z., Nathwani, J. (2013). Simulation of cogeneration within the concept of smart energy
dc.relation.referencesennetworks. Energy Convers Manage, 75, 453–465. (in English)
dc.relation.referencesenLund, H., Andersen, A. N., & Connolly, D. (2012). From electricity smart grids to smart energy systems – a
dc.relation.referencesenmarket operation based approach and understanding. Energy, 42, 96–102. (in English)
dc.relation.referencesenNakashydze, L. V., Shevchenko, M. V. (2017). Solar collectors – energy-active fences as an element of the air
dc.relation.referencesenconditioning system of buildings. Construction, materials science, mechanical engineering, 99. (in Ukrainian)
dc.relation.referencesenKuvshynov, V. V. (2013). Methods for calculating and improving the efficiency of thermal photoelectric
dc.relation.referenceseninstallations. SNUNEI, Sevastopol, 2 (46), 166–171. (in Ukrainian)
dc.relation.referencesenFryd, S. E. (1988). Methods of thermal testing of solar collectors. Moscow, JIHT USSR Academy of sciences,
dc.relation.referencesenp. 57. (in Russian)
dc.relation.referencesenYatsuk, V. O., Malachivskyi, P. S. (2008). Methods for improving measurement accuracy. ‘Beskydbit’, Lviv, 368. (in Ukrainian)
dc.relation.referencesenVasylykha, Kh. V. (2017). Improvement of the regulatory and technical base for testing solar converters
dc.relation.referencesen(Doctoral dissertation). Lviv, 203. (in Ukrainian)
dc.relation.referencesenZhmakyn, L. Y., Kozyrev, Y. V., Kriukov, A. A. (2013). Solar water heaters made of textile materials.
dc.relation.referencesenApplication of new textile and composite materials in technical textiles: scientific and practical conference 2013.
dc.relation.referencesenKSTU, Kazan, 199. (in Russian)
dc.relation.referencesenShapoval, S. P. (2010). Efficiency of the ‘delta system’ of flat solar collectors at different angles of their
dc.relation.referenceseninstallation. Bulletin of the National University, Lviv, 664, 331–335. (in Ukrainian)
dc.relation.referencesenPona, O. M. (2018). Improving the efficiency of a combined heat supply system with a solar roof (Doctoral
dc.relation.referencesendissertation). Lviv, 200. (in Ukrainian)
dc.relation.referencesenShapoval, S. P. (2010). Patent of Ukraine 53370. Kyiv: State Patent Office of Ukraine. (in Ukrainian)
dc.relation.referencesenDaffy, Dzh. A., Bekman U. A. (1977). Thermal processes using solar energy. Moscow, Myr, 420. (in Russian)
dc.relation.urihttp://energetika.in.ua
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.rights.holder© Венгрин Ірина, 2019
dc.subjectсонячна енергія
dc.subjectсонячний колектор
dc.subjectфактор
dc.subjectскляний фасад
dc.subjectфотоелемент
dc.subjectsolar energy
dc.subjectsolar collector
dc.subjectfactor
dc.subjectglass facade
dc.subjectsolar cell
dc.titleДослідження сонячних колекторів, інтегрованих у конструкцію скляного фасаду будівлі/споруди: необхідність та особливості
dc.title.alternativeResearch of solar collectors integrated into the design of the building/structure glass facade: necessity and features
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v1n1_Venhryn_I-Research_of_solar_collectors_38-46.pdf
Size:
1012.22 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v1n1_Venhryn_I-Research_of_solar_collectors_38-46__COVER.png
Size:
422.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: