Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles

dc.citation.epage34
dc.citation.issue2
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage31
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorТовстюк, Корнелія
dc.contributor.authorTovstyuk, Cornelia
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-06T07:20:22Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractВикористання нанокомпозитних матеріалів сприяло поступу в створенні нових електронних пристроїв (мінітранзисторів, сенсорів, мікроприводів, які використовують для побудови штучних м’язів, надконденсаторів). Особливе місце посідають нанокомпозити з магнеточутливими наповнювачами, які особливо успішно використовують в медицині. Нанокомпозити також застосовують для захисного покриття. Для такого покриття, залежно від функціональних функцій, виникає потреба досягнення певного значення провідності та її зміни з температурою. В роботі отримано модель провідності полімерних нанокомпозитів на основі ґрафену (Gr/PS) на підставі експериментальних даних. Найбільше відносне відхилення між поверхнею провідності та даними експерименту не перевищує 9,5 %. Вираз одержано для концентрації ґрафену 1 < C(Gr) < 30 мас. % та інтервалу температур 20 < T < 100 0C. Отримана в роботі залежність питомої електропровідності від концентрації наповнювача та від температури дасть змогу експериментаторам підібрати нанокомпозит із потрібною провідністю і оцінити температурні впливи на нього для умов, у яких перебуватиме матеріал.
dc.description.abstractThe use of nanocomposite materials has led to progress in the creation of new electronic devices (minitransistors, sensors, micro-drives, which are used to build artificial muscles, and supercapacitors. Nanocomposites occupy a special place with magnetosensitive fillers, particularly successfully used in medicine. Nanocomposites are also used for a protective coating. Depending on the operational functions, achieving a specific conductivity value and its change with temperature is necessary for such a coating. In the work, a conductivity model of polymer nanocomposites based on graphene (Gr/PS) was obtained using experimental data. The largest relative deviation between the conductivity surface and experimental data does not exceed 9.5 %. The expression was obtained for the graphene concentration 1 < C(Gr) < 30 wt. % and the temperature range 20 < T < 100 °C. The dependence of the specific electrical conductivity on the filler concentration and temperature obtained in the work will allow the researchers to select a nanocomposite with the required conductivity and evaluate the temperature effects on it for the conditions to which the material will be exposed.
dc.format.extent31-34
dc.format.pages4
dc.identifier.citationTovstyuk C. Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles / Cornelia Tovstyuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 31–34.
dc.identifier.citationenTovstyuk C. Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles / Cornelia Tovstyuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 31–34.
dc.identifier.doidoi.org/10.23939/jcpee2022.02.031
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63937
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 2 (12), 2022
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (12), 2022
dc.relation.references[1] E. Kovalchuk, M. Zatsushyn, and N. Dumanchuk, “Chemical Synthesis of the Nanostructured Polyaniline and its applications”, in Proc. Shevchenko Sci. Soc. Chem. Biochem, vol. 21, pp. 108–122, 2008.
dc.relation.references[2] B. Kim, D. Park, J. Joo, S. Yu, and S. Lee, “Synthesis characteristics and field emission of doped and de-doped polypyrrole, polyaniline, poly (3, 4-ethylene-dioxythiophene) nanotubes and nanowires”, Synth. Met, vol. 150, pp. 279–284, 2005.
dc.relation.references[3] A.Ambrosi, A.Morrin, M. Smyth, and A. Killard, “The Application and conducting polymer nanoparticle electrodes to the sensing of ascorbic acid”, Anal. Chem. Acta, vol. 75, no. 21, pp. 5673–5679, 2008.
dc.relation.references[4] R. Baughman, “Playing nature’s game with artificial muscles”, Science, vol. 308, pp. 63–65, 2005.
dc.relation.references[5] P. Sivaraman, V. Hande, V.Mishra, Ch.S. Rao, and A. Samui, “All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone)”, J. Power Sources, vol. 124, pp. 351–354, 2003.
dc.relation.references[6] J. Jang, J. Bae, M. Choi, and S.-H. Yoon, “Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor”, Carbon, vol. 19, no. 7, pp. 2730–2736, 2005.
dc.relation.references[7] J. Alam, U. Riaz and S. Ahmad. “Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings”, Polym. Adv. Technol, vol. 19, is. 7, pp. 882–888, 2008 (Ukrainian).
dc.relation.references[8] P. P. Horbyk, “Nanocomposites with the functions of medical and biological nanorobots: synthesis, properties, applications”, Nanosystems, Nanomaterials, Nanotechnologies, vol. 11, no. 2, pp. 323–436, 2013 (Ukrainian).
dc.relation.references[9] P. P. Horbyk, M. P. Turelyk, S. V. Horobets, and I. V. Demyanenko, Biofunctional nanomaterials and nanocomposites: scientific foundations and direction of application, Kyiv: NTUU “KPI”, p. 471, 2013 (Ukrainian).
dc.relation.references[10] O. A. Ageev, Y. N. Varzaev, V. A. Smirnov, Yu. V. Syuryk, and N.I. Serbia, “Investigation of the electrical properties of polymer nanocomposites based on graphene”, Izvestia YuFTU. Technical Sciences, vol. 117, no. 4, pp.77–84, 2011.
dc.relation.references[11] L. J. Asriaanse et al., ”High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to Thz ac conductivity”, Physical Review Letters, no. 78, pp. 1755–1758, 1997.
dc.relation.references[12] M. Delvaux, J. Duchet, P.-Y. Stavaux, L. Legras, and S. Demoustier-Champagne, “Chemical and electrochemical synthesis of polyaniline micro- and nanotubules”, Synth. Met, vol. 113, pp. 275–280, 2000.
dc.relation.references[13] E. Tkalya et al., “Latex-based concept for the preparation of graphene-based polymer nanocomposites”, J. Mater. Chem, no. 20, pp. 3035–3039, 2010.
dc.relation.referencesen[1] E. Kovalchuk, M. Zatsushyn, and N. Dumanchuk, "Chemical Synthesis of the Nanostructured Polyaniline and its applications", in Proc. Shevchenko Sci. Soc. Chem. Biochem, vol. 21, pp. 108–122, 2008.
dc.relation.referencesen[2] B. Kim, D. Park, J. Joo, S. Yu, and S. Lee, "Synthesis characteristics and field emission of doped and de-doped polypyrrole, polyaniline, poly (3, 4-ethylene-dioxythiophene) nanotubes and nanowires", Synth. Met, vol. 150, pp. 279–284, 2005.
dc.relation.referencesen[3] A.Ambrosi, A.Morrin, M. Smyth, and A. Killard, "The Application and conducting polymer nanoparticle electrodes to the sensing of ascorbic acid", Anal. Chem. Acta, vol. 75, no. 21, pp. 5673–5679, 2008.
dc.relation.referencesen[4] R. Baughman, "Playing nature’s game with artificial muscles", Science, vol. 308, pp. 63–65, 2005.
dc.relation.referencesen[5] P. Sivaraman, V. Hande, V.Mishra, Ch.S. Rao, and A. Samui, "All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone)", J. Power Sources, vol. 124, pp. 351–354, 2003.
dc.relation.referencesen[6] J. Jang, J. Bae, M. Choi, and S.-H. Yoon, "Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor", Carbon, vol. 19, no. 7, pp. 2730–2736, 2005.
dc.relation.referencesen[7] J. Alam, U. Riaz and S. Ahmad. "Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings", Polym. Adv. Technol, vol. 19, is. 7, pp. 882–888, 2008 (Ukrainian).
dc.relation.referencesen[8] P. P. Horbyk, "Nanocomposites with the functions of medical and biological nanorobots: synthesis, properties, applications", Nanosystems, Nanomaterials, Nanotechnologies, vol. 11, no. 2, pp. 323–436, 2013 (Ukrainian).
dc.relation.referencesen[9] P. P. Horbyk, M. P. Turelyk, S. V. Horobets, and I. V. Demyanenko, Biofunctional nanomaterials and nanocomposites: scientific foundations and direction of application, Kyiv: NTUU "KPI", p. 471, 2013 (Ukrainian).
dc.relation.referencesen[10] O. A. Ageev, Y. N. Varzaev, V. A. Smirnov, Yu. V. Syuryk, and N.I. Serbia, "Investigation of the electrical properties of polymer nanocomposites based on graphene", Izvestia YuFTU. Technical Sciences, vol. 117, no. 4, pp.77–84, 2011.
dc.relation.referencesen[11] L. J. Asriaanse et al., "High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to Thz ac conductivity", Physical Review Letters, no. 78, pp. 1755–1758, 1997.
dc.relation.referencesen[12] M. Delvaux, J. Duchet, P.-Y. Stavaux, L. Legras, and S. Demoustier-Champagne, "Chemical and electrochemical synthesis of polyaniline micro- and nanotubules", Synth. Met, vol. 113, pp. 275–280, 2000.
dc.relation.referencesen[13] E. Tkalya et al., "Latex-based concept for the preparation of graphene-based polymer nanocomposites", J. Mater. Chem, no. 20, pp. 3035–3039, 2010.
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectpolymer nanocomposites based on grapheme
dc.subjectnanocomposite conductivity
dc.subjectmathematical model of conductivity
dc.titleModeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles
dc.title.alternativeМоделювання електропровідності полімерних нанокомпозитів на основі ґрафену
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v12n2_Tovstyuk_C-Modeling_of_Electrical_Conductivity_31-34.pdf
Size:
222.52 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v12n2_Tovstyuk_C-Modeling_of_Electrical_Conductivity_31-34__COVER.png
Size:
507.65 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: