Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles
dc.citation.epage | 34 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Обчислювальні проблеми електротехніки | |
dc.citation.spage | 31 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Товстюк, Корнелія | |
dc.contributor.author | Tovstyuk, Cornelia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-06T07:20:22Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Використання нанокомпозитних матеріалів сприяло поступу в створенні нових електронних пристроїв (мінітранзисторів, сенсорів, мікроприводів, які використовують для побудови штучних м’язів, надконденсаторів). Особливе місце посідають нанокомпозити з магнеточутливими наповнювачами, які особливо успішно використовують в медицині. Нанокомпозити також застосовують для захисного покриття. Для такого покриття, залежно від функціональних функцій, виникає потреба досягнення певного значення провідності та її зміни з температурою. В роботі отримано модель провідності полімерних нанокомпозитів на основі ґрафену (Gr/PS) на підставі експериментальних даних. Найбільше відносне відхилення між поверхнею провідності та даними експерименту не перевищує 9,5 %. Вираз одержано для концентрації ґрафену 1 < C(Gr) < 30 мас. % та інтервалу температур 20 < T < 100 0C. Отримана в роботі залежність питомої електропровідності від концентрації наповнювача та від температури дасть змогу експериментаторам підібрати нанокомпозит із потрібною провідністю і оцінити температурні впливи на нього для умов, у яких перебуватиме матеріал. | |
dc.description.abstract | The use of nanocomposite materials has led to progress in the creation of new electronic devices (minitransistors, sensors, micro-drives, which are used to build artificial muscles, and supercapacitors. Nanocomposites occupy a special place with magnetosensitive fillers, particularly successfully used in medicine. Nanocomposites are also used for a protective coating. Depending on the operational functions, achieving a specific conductivity value and its change with temperature is necessary for such a coating. In the work, a conductivity model of polymer nanocomposites based on graphene (Gr/PS) was obtained using experimental data. The largest relative deviation between the conductivity surface and experimental data does not exceed 9.5 %. The expression was obtained for the graphene concentration 1 < C(Gr) < 30 wt. % and the temperature range 20 < T < 100 °C. The dependence of the specific electrical conductivity on the filler concentration and temperature obtained in the work will allow the researchers to select a nanocomposite with the required conductivity and evaluate the temperature effects on it for the conditions to which the material will be exposed. | |
dc.format.extent | 31-34 | |
dc.format.pages | 4 | |
dc.identifier.citation | Tovstyuk C. Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles / Cornelia Tovstyuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 31–34. | |
dc.identifier.citationen | Tovstyuk C. Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles / Cornelia Tovstyuk // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 12. — No 2. — P. 31–34. | |
dc.identifier.doi | doi.org/10.23939/jcpee2022.02.031 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63937 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Обчислювальні проблеми електротехніки, 2 (12), 2022 | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (12), 2022 | |
dc.relation.references | [1] E. Kovalchuk, M. Zatsushyn, and N. Dumanchuk, “Chemical Synthesis of the Nanostructured Polyaniline and its applications”, in Proc. Shevchenko Sci. Soc. Chem. Biochem, vol. 21, pp. 108–122, 2008. | |
dc.relation.references | [2] B. Kim, D. Park, J. Joo, S. Yu, and S. Lee, “Synthesis characteristics and field emission of doped and de-doped polypyrrole, polyaniline, poly (3, 4-ethylene-dioxythiophene) nanotubes and nanowires”, Synth. Met, vol. 150, pp. 279–284, 2005. | |
dc.relation.references | [3] A.Ambrosi, A.Morrin, M. Smyth, and A. Killard, “The Application and conducting polymer nanoparticle electrodes to the sensing of ascorbic acid”, Anal. Chem. Acta, vol. 75, no. 21, pp. 5673–5679, 2008. | |
dc.relation.references | [4] R. Baughman, “Playing nature’s game with artificial muscles”, Science, vol. 308, pp. 63–65, 2005. | |
dc.relation.references | [5] P. Sivaraman, V. Hande, V.Mishra, Ch.S. Rao, and A. Samui, “All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone)”, J. Power Sources, vol. 124, pp. 351–354, 2003. | |
dc.relation.references | [6] J. Jang, J. Bae, M. Choi, and S.-H. Yoon, “Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor”, Carbon, vol. 19, no. 7, pp. 2730–2736, 2005. | |
dc.relation.references | [7] J. Alam, U. Riaz and S. Ahmad. “Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings”, Polym. Adv. Technol, vol. 19, is. 7, pp. 882–888, 2008 (Ukrainian). | |
dc.relation.references | [8] P. P. Horbyk, “Nanocomposites with the functions of medical and biological nanorobots: synthesis, properties, applications”, Nanosystems, Nanomaterials, Nanotechnologies, vol. 11, no. 2, pp. 323–436, 2013 (Ukrainian). | |
dc.relation.references | [9] P. P. Horbyk, M. P. Turelyk, S. V. Horobets, and I. V. Demyanenko, Biofunctional nanomaterials and nanocomposites: scientific foundations and direction of application, Kyiv: NTUU “KPI”, p. 471, 2013 (Ukrainian). | |
dc.relation.references | [10] O. A. Ageev, Y. N. Varzaev, V. A. Smirnov, Yu. V. Syuryk, and N.I. Serbia, “Investigation of the electrical properties of polymer nanocomposites based on graphene”, Izvestia YuFTU. Technical Sciences, vol. 117, no. 4, pp.77–84, 2011. | |
dc.relation.references | [11] L. J. Asriaanse et al., ”High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to Thz ac conductivity”, Physical Review Letters, no. 78, pp. 1755–1758, 1997. | |
dc.relation.references | [12] M. Delvaux, J. Duchet, P.-Y. Stavaux, L. Legras, and S. Demoustier-Champagne, “Chemical and electrochemical synthesis of polyaniline micro- and nanotubules”, Synth. Met, vol. 113, pp. 275–280, 2000. | |
dc.relation.references | [13] E. Tkalya et al., “Latex-based concept for the preparation of graphene-based polymer nanocomposites”, J. Mater. Chem, no. 20, pp. 3035–3039, 2010. | |
dc.relation.referencesen | [1] E. Kovalchuk, M. Zatsushyn, and N. Dumanchuk, "Chemical Synthesis of the Nanostructured Polyaniline and its applications", in Proc. Shevchenko Sci. Soc. Chem. Biochem, vol. 21, pp. 108–122, 2008. | |
dc.relation.referencesen | [2] B. Kim, D. Park, J. Joo, S. Yu, and S. Lee, "Synthesis characteristics and field emission of doped and de-doped polypyrrole, polyaniline, poly (3, 4-ethylene-dioxythiophene) nanotubes and nanowires", Synth. Met, vol. 150, pp. 279–284, 2005. | |
dc.relation.referencesen | [3] A.Ambrosi, A.Morrin, M. Smyth, and A. Killard, "The Application and conducting polymer nanoparticle electrodes to the sensing of ascorbic acid", Anal. Chem. Acta, vol. 75, no. 21, pp. 5673–5679, 2008. | |
dc.relation.referencesen | [4] R. Baughman, "Playing nature’s game with artificial muscles", Science, vol. 308, pp. 63–65, 2005. | |
dc.relation.referencesen | [5] P. Sivaraman, V. Hande, V.Mishra, Ch.S. Rao, and A. Samui, "All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone)", J. Power Sources, vol. 124, pp. 351–354, 2003. | |
dc.relation.referencesen | [6] J. Jang, J. Bae, M. Choi, and S.-H. Yoon, "Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor", Carbon, vol. 19, no. 7, pp. 2730–2736, 2005. | |
dc.relation.referencesen | [7] J. Alam, U. Riaz and S. Ahmad. "Development of nanostructured polyaniline dispersed smart anticorrosive composite coatings", Polym. Adv. Technol, vol. 19, is. 7, pp. 882–888, 2008 (Ukrainian). | |
dc.relation.referencesen | [8] P. P. Horbyk, "Nanocomposites with the functions of medical and biological nanorobots: synthesis, properties, applications", Nanosystems, Nanomaterials, Nanotechnologies, vol. 11, no. 2, pp. 323–436, 2013 (Ukrainian). | |
dc.relation.referencesen | [9] P. P. Horbyk, M. P. Turelyk, S. V. Horobets, and I. V. Demyanenko, Biofunctional nanomaterials and nanocomposites: scientific foundations and direction of application, Kyiv: NTUU "KPI", p. 471, 2013 (Ukrainian). | |
dc.relation.referencesen | [10] O. A. Ageev, Y. N. Varzaev, V. A. Smirnov, Yu. V. Syuryk, and N.I. Serbia, "Investigation of the electrical properties of polymer nanocomposites based on graphene", Izvestia YuFTU. Technical Sciences, vol. 117, no. 4, pp.77–84, 2011. | |
dc.relation.referencesen | [11] L. J. Asriaanse et al., "High-dilution carbon-black/polymer composites: Hierarchical percolating network derived from Hz to Thz ac conductivity", Physical Review Letters, no. 78, pp. 1755–1758, 1997. | |
dc.relation.referencesen | [12] M. Delvaux, J. Duchet, P.-Y. Stavaux, L. Legras, and S. Demoustier-Champagne, "Chemical and electrochemical synthesis of polyaniline micro- and nanotubules", Synth. Met, vol. 113, pp. 275–280, 2000. | |
dc.relation.referencesen | [13] E. Tkalya et al., "Latex-based concept for the preparation of graphene-based polymer nanocomposites", J. Mater. Chem, no. 20, pp. 3035–3039, 2010. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | polymer nanocomposites based on grapheme | |
dc.subject | nanocomposite conductivity | |
dc.subject | mathematical model of conductivity | |
dc.title | Modeling of Electrical Conductivity of Graphene-Based Polymer Nanocomposites: Calculation from the First Principles | |
dc.title.alternative | Моделювання електропровідності полімерних нанокомпозитів на основі ґрафену | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1