Optimization of geometry of piezoresistive effect on the example of cubic crystals

dc.citation.epage136
dc.citation.issue1
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage126
dc.citation.volume4
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБурий, О.
dc.contributor.authorОльховик, Б.
dc.contributor.authorГрінченко, О.
dc.contributor.authorАндрущак, А.
dc.contributor.authorАндрущак, М.
dc.contributor.authorBuryi, Oleh
dc.contributor.authorOlchovyk, B.
dc.contributor.authorHrinchenko, O.
dc.contributor.authorAndrushchak, A.
dc.contributor.authorAndrushchak, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T09:06:32Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractНа прикладі напівпровідникових кристалів Ge, Si, PbTe, PbS, InSb з різними рівнями легування та різними типами провідності проведено оптимізацію геометрії п’єзорезистивного ефекту, а саме визначено такі напрямки вимірювання напруги та прикладання одновісного тиску, які забезпечують максимально досяжне значення ефекту. Оптимізація базується на підході, що використовує побудову та аналіз екстремальних поверхонь, які представляють усі можливі максимуми цільової функції (величини ефекту) при різних просторових орієнтаціях взаємодіючих факторів. Параметрами оптимізації були кути, що визначають одиничні вектори напрямків протікання струму та прикладання одновісного тиску. Напрямок радіус-вектора точок екстремальної поверхні відповідав напрямку, в якому вимірюється електрична напруга, а довжина цього радіус-вектора для кожної точки визначалася шляхом встановлення таких параметрів оптимізації, за яких величина ефекту для даного напрямку є максимальною. Показано, що оптимальна геометрія взаємодії в більшості досліджуваних випадків є поздовжньою, і лише для кристалів n-PbTe, p-InSb вона поперечна (хоча й не тотожня), а оптимальними напрямками для досліджених кристалів є <100>, <110> або <111> залежно від складу кристала та типу легування. Незважаючи на те, що всі досліджені кристали належать до однієї точкової групи симетрії (m3m), форми екстремальних поверхонь для них суттєво відрізняються, що зумовлено різними співвідношеннями між п’єзорезистивними коефіцієнтами. Визначено типові форми екстремальних поверхонь, для пояснення отриманих результатів проведено аналіз граничних випадків, які відрізняються співвідношенням п’єзорезистивних коефіцієнтів. На основі цього аналізу було встановлено чотири основні типи екстремальних поверхонь. Побудовано схему, яка дозволяє для кубічних кристалів оцінити тип екстремальної поверхні та відповідні їй оптимальні напрямки вимірювання напруги, протікання струму (для кубічних кристалів ці два напрямки збігаються) та прикладання одновісного тиску. На основі цієї схеми пояснено форми екстремальних поверхонь, отримані для досліджених кристалів.
dc.description.abstractOn the example of semiconductor crystals Ge, Si, PbTe, PbS, InSb with different levels of doping and different types of conductivity, the geometry of the piezoresistive effect was optimized, namely, such directions of voltage measuring and uniaxial pressure applying were determined, which ensure the maximum achievable value of the effect. The optimization is based on an approach using the construction and analysis of extreme surfaces that represent all possible maxima of the objective function (the magnitude of the effect) under different spatial orientations of interacting factors. The optimization parameters were the angles that determine the directions of the unit vectors of the directions of current and uniaxial pressure applying. The directions of the radius vectors of the points on the extreme surface coincide with the ones in which the electric voltage is measured, and the length of this radius vector for each point was determined by setting such optimization parameters for which the magnitude of the effect for a given direction of voltage measuring would be maximal. It is shown that the optimal interaction geometry in most of the studied cases is longitudinal, and only for n-PbTe, p-InSb crystals it is transverse (although not identical), and the optimal directions for the studied crystals are <100>, <110> or <111> depending on the composition of the crystal and the type of doping. Despite the fact that all investigated crystals belong to the same point symmetry group (m3m), the shapes of the extreme surfaces for them are significantly different, which is caused by different ratios between the piezoresistive coefficients. Typical forms of extreme surfaces have been identified, and in order to explain the obtained results, an analysis of limiting cases that differ in the ratio of piezoresistive coefficients has been carried out. Based on this analysis, four main types of extreme surfaces were established. A scheme has been built that allows, in the case of cubic crystals, to estimate the type of extreme surface and the corresponding optimal directions of voltage measuring, current density (for cubic crystals, these directions coincide) and uniaxial pressure applying. On the basis of this scheme, the forms of extreme surfaces obtained for the investigated crystals are explained.
dc.format.extent126-136
dc.format.pages11
dc.identifier.citationOptimization of geometry of piezoresistive effect on the example of cubic crystals / Buryi Oleh, B. Olchovyk, O. Hrinchenko, A. Andrushchak, M. Andrushchak // Infocommunication technologies and electronic engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 4. — No 1. — P. 126–136.
dc.identifier.citationenOptimization of geometry of piezoresistive effect on the example of cubic crystals / Buryi Oleh, B. Olchovyk, O. Hrinchenko, A. Andrushchak, M. Andrushchak // Infocommunication technologies and electronic engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 4. — No 1. — P. 126–136.
dc.identifier.doidoi.org/10.23939/ictee2024.01.126
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64155
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 1 (4), 2024
dc.relation.ispartofInfocommunication technologies and electronic engineering, 1 (4), 2024
dc.relation.references[1] Barlian, A., Park, W.-T., Mallon, J., Rastegar, A. and Pruitt, B. (2009) ”Review: Semiconductor piezoresistance for microsystems”, Proc. IEEE, vol. 97, no. 3, pp. 513-552. doi: 10.1109/JPROC.2009.2013612
dc.relation.references[2] Doll, J. and Pruitt, B. (2013) Piezoresistor Design and Applications. Springer Science+Business Media, New York. doi: 10.1007/978-1-4614-8517-9
dc.relation.references[3] Fiorillo, A., Critello, C. and Pullano S. (2018) ”Theory, technology and applications of piezoresistive sensors: A review”, Sensors and Actuators A, vol. 281, pp. 156-175. doi: 10.1016/j.sna.2018.07.006
dc.relation.references[4] Li, J., Fang, L., Sun, B., Li, X. and Kang S. (2020) ”Review – Recent progress in flexible and stretchable piezoresistive sensors and their applications”, Journal of The Electrochemical Society, vol. 167, no. 3, 037561. doi: 10.1149/1945-7111/ab6828
dc.relation.references[5] Buryy, O., Andrushchak, A., Kushnir, O., Ubizskii, S., Vynnyk, D., Yurkevych, O., Larchenko, A., Chaban, K., Gotra, O. and Kityk, A. (2013) ”Method of extreme surfaces for optimizing the geometry of acousto-optic interactions in crystalline materials: Example of LiNbO3 crystals”, J. Appl. Phys., vol. 113, no. 8, 083103. doi: 10.1063/1.4792304
dc.relation.references[6] Buryy, O., Andrushchak, A., Demyanyshyn, N. and Mytsyk B. (2016) ”Optimizing of piezo-optic interaction geometry in SrB4O7 crystals”, Optica Applicata, vol. 46, no. 3, pp. 447-459. doi: 10.5277/oa160311
dc.relation.references[7] Andrushchak, A., Buryy, O., Andrushchak, N., Hotra, Z., Sushynskyi, O., Singh, G., Janyani, V. and Kityk, I. (2017) ”General method of extreme surfaces for geometry optimization of the linear electro-optic effect on an example of LiNbO3:MgO crystals”,. Appl. Opt., vol. 56, no. 22, pp. 6255-6262. doi: 10.1364/AO.56.006255
dc.relation.references[8] Andrushchak, N., Buryy, O., Danylov, A., Andrushchak, A. and Sahraoui, B. (2021) ”The optimal vector phase matching conditions in crystalline materials determined by extreme surfaces method: Example of uniaxial nonlinear crystals”, Opt. Mat., vol. 120, 111420. doi: 10.1016/j.optmat.2021.111420
dc.relation.references[9] Sirotin, Yu. and Shaskolskaja, M. (1983) Fundamentals of crystal physics. Imported Pubn., Moscow.
dc.relation.references[10] Microelectronic sensors of physical values (2003). Ed. by Z. Hotra. Vol. 2. Liga-press, Lviv (in Ukrainian).
dc.relation.references[11] Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (1989) Numerical Recipes in Pascal. The art of Scientific Computing. Cambridge University Press, Cambridge.
dc.relation.referencesen[1] Barlian, A., Park, W.-T., Mallon, J., Rastegar, A. and Pruitt, B. (2009) "Review: Semiconductor piezoresistance for microsystems", Proc. IEEE, vol. 97, no. 3, pp. 513-552. doi: 10.1109/JPROC.2009.2013612
dc.relation.referencesen[2] Doll, J. and Pruitt, B. (2013) Piezoresistor Design and Applications. Springer Science+Business Media, New York. doi: 10.1007/978-1-4614-8517-9
dc.relation.referencesen[3] Fiorillo, A., Critello, C. and Pullano S. (2018) "Theory, technology and applications of piezoresistive sensors: A review", Sensors and Actuators A, vol. 281, pp. 156-175. doi: 10.1016/j.sna.2018.07.006
dc.relation.referencesen[4] Li, J., Fang, L., Sun, B., Li, X. and Kang S. (2020) "Review – Recent progress in flexible and stretchable piezoresistive sensors and their applications", Journal of The Electrochemical Society, vol. 167, no. 3, 037561. doi: 10.1149/1945-7111/ab6828
dc.relation.referencesen[5] Buryy, O., Andrushchak, A., Kushnir, O., Ubizskii, S., Vynnyk, D., Yurkevych, O., Larchenko, A., Chaban, K., Gotra, O. and Kityk, A. (2013) "Method of extreme surfaces for optimizing the geometry of acousto-optic interactions in crystalline materials: Example of LiNbO3 crystals", J. Appl. Phys., vol. 113, no. 8, 083103. doi: 10.1063/1.4792304
dc.relation.referencesen[6] Buryy, O., Andrushchak, A., Demyanyshyn, N. and Mytsyk B. (2016) "Optimizing of piezo-optic interaction geometry in SrB4O7 crystals", Optica Applicata, vol. 46, no. 3, pp. 447-459. doi: 10.5277/oa160311
dc.relation.referencesen[7] Andrushchak, A., Buryy, O., Andrushchak, N., Hotra, Z., Sushynskyi, O., Singh, G., Janyani, V. and Kityk, I. (2017) "General method of extreme surfaces for geometry optimization of the linear electro-optic effect on an example of LiNbO3:MgO crystals",. Appl. Opt., vol. 56, no. 22, pp. 6255-6262. doi: 10.1364/AO.56.006255
dc.relation.referencesen[8] Andrushchak, N., Buryy, O., Danylov, A., Andrushchak, A. and Sahraoui, B. (2021) "The optimal vector phase matching conditions in crystalline materials determined by extreme surfaces method: Example of uniaxial nonlinear crystals", Opt. Mat., vol. 120, 111420. doi: 10.1016/j.optmat.2021.111420
dc.relation.referencesen[9] Sirotin, Yu. and Shaskolskaja, M. (1983) Fundamentals of crystal physics. Imported Pubn., Moscow.
dc.relation.referencesen[10] Microelectronic sensors of physical values (2003). Ed. by Z. Hotra. Vol. 2. Liga-press, Lviv (in Ukrainian).
dc.relation.referencesen[11] Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (1989) Numerical Recipes in Pascal. The art of Scientific Computing. Cambridge University Press, Cambridge.
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectп’єзорезистори
dc.subjectсенсори
dc.subjectнапівпровідники
dc.subjectоптимізація
dc.subjectекстремальні поверхні
dc.subjectpiezoresistors
dc.subjectsensors
dc.subjectsemiconductors
dc.subjectoptimization
dc.subjectextreme surfaces
dc.subject.udc53.06
dc.titleOptimization of geometry of piezoresistive effect on the example of cubic crystals
dc.title.alternativeОптимізація геометрії п’єзорезистивного ефекту на прикладі кубічних кристалів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v4n1_Buryi_O-Optimization_of_geometry_126-136.pdf
Size:
901.38 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v4n1_Buryi_O-Optimization_of_geometry_126-136__COVER.png
Size:
1.04 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: