Dynamics of enzyme kinetic model under the new generalized Hattaf fractional derivative
| dc.citation.epage | 469 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Математичне моделювання та обчислення | |
| dc.citation.spage | 463 | |
| dc.citation.volume | 11 | |
| dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
| dc.contributor.affiliation | Регіональний центр освіти і підготовки професій (CRMEF) | |
| dc.contributor.affiliation | Hassan II University of Casablanca | |
| dc.contributor.affiliation | Centre R´egional des M´etiers de l’Education et de la Formation (CRMEF) | |
| dc.contributor.author | Ель Мамуні, Х. | |
| dc.contributor.author | Хаттаф, К. | |
| dc.contributor.author | Юсфі, Н. | |
| dc.contributor.author | El Mamouni, H. | |
| dc.contributor.author | Hattaf, K. | |
| dc.contributor.author | Yousfi, N. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-10-20T08:10:19Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Каталітична дія є однією з найважливіших характеристик ферментів у хімічних реакціях. У цій статті пропонується та досліджується математична модель хімічної кінетичної реакції з ефектом пам’яті з використанням нової узагальненої дробової похідної Хаттафа. Існування та єдиність розв’язків встановлено за допомогою теорії нерухомої точки, і, нарешті, щоб підтвердити теоретичні результати, закінчуємо чисельним моделюванням на основі нової чисельної схеми, яка включає метод Ейлера. | |
| dc.description.abstract | Catalytic action is one of the most important characteristics of enzymes in chemical reactions. In this article, we propose and study a mathematical model of chemical kinetic reaction with the memory effect using the new generalized Hattaf fractional derivative. The existence and uniqueness of the solutions are established by means of fixed point theory and, finally, to support the theoretical results, we end the article with the results of numerical simulations based on a novel numerical scheme that includes the Euler method. | |
| dc.format.extent | 463-469 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | El Mamouni H. Dynamics of enzyme kinetic model under the new generalized Hattaf fractional derivative / H. El Mamouni, K. Hattaf, N. Yousfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 463–469. | |
| dc.identifier.citationen | El Mamouni H. Dynamics of enzyme kinetic model under the new generalized Hattaf fractional derivative / H. El Mamouni, K. Hattaf, N. Yousfi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 11. — No 2. — P. 463–469. | |
| dc.identifier.doi | doi.org/10.23939/mmc2024.02.463 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/113806 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Математичне моделювання та обчислення, 2 (11), 2024 | |
| dc.relation.ispartof | Mathematical Modeling and Computing, 2 (11), 2024 | |
| dc.relation.references | [1] Wong J. T.-F. Onthe Steady-State Method of Enzyme Kinetics. Journalof the AmericanChemical Society. 87 (8), 1788–1793 (1965). | |
| dc.relation.references | [2] Michaelis L., Menten M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift. 49, 333–369 (1913). | |
| dc.relation.references | [3] Cha S. Kinetic Behavior at High Enzyme Concentrations: Magnitude of errors of michaelis-menten and other approximations. Journal of Biological Chemistry. 245 (18), 4814–4818 (1970). | |
| dc.relation.references | [4] Wald S., Wilke C. R., Blanch H. W. Kinetics of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering. 26 (3), 221–230 (1984). | |
| dc.relation.references | [5] Najafpour G. D., Shan C. P. Enzymatic hydrolysis of molasses. Bioresource Technology. 86 (1), 91–94 (2003). | |
| dc.relation.references | [6] Gan Q., Allen S. J., Taylor G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry. 38 (7), 1003–1018 (2003). | |
| dc.relation.references | [7] Urban P. L., Goodall D. M., Bruce N. C. Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnology Advances. 24 (1), 42–57 (2006). | |
| dc.relation.references | [8] Wong M. K. L., Krycer J. R., Burchfield J. G., James D. E., Kuncic Z. A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems. FEBS Open Bio. 5 (1), 226–239 (2015). | |
| dc.relation.references | [9] Atangana A. Modeling the Enzyme Kinetic Reaction. Acta Biotheoretica. 63, 239–256 (2015). | |
| dc.relation.references | [10] Milek J. Estimation of the Kinetic Parameters for H2O2 Enzymatic decomposition and for catalase deactivation. Brazilian Journal of Chemical Engineering. 35 (3), 995–1004 (2018). | |
| dc.relation.references | [11] Khan M., Ahmed Z., Ali F., Khan N., Khan I., Nisar K. S. Dynamics of two-step reversible enzymatic reaction with Mittag–Leffler Kernel. PLoS ONE. 18 (3), e0277806 (2023). | |
| dc.relation.references | [12] Atangana A., Baleanu D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Science. 20 (2), 763–769 (2016). | |
| dc.relation.references | [13] Hattaf K. A new generalized definition of fractional derivative with non-singular kernel. Computation. 8 (2), 49 (2020). | |
| dc.relation.references | [14] Caputo A., Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications. 1 (2), 73–85 (2015). | |
| dc.relation.references | [15] Al-Refai M. On weighted Atangana–Baleanufractional operators. Advances in Difference Equations. 2020, 3 (2020). | |
| dc.relation.references | [16] Djida J. D., Atangana A., Area I. Numerical Computation of a Fractional Derivative with Non-Local and Non-Singular Kernel. Mathematical Modelling of Natural Phenomena. 12 (3), 4–13 (2017). | |
| dc.relation.references | [17] Baleanu D., Fernandez A. On some new properties of fractional derivatives with Mittag–Leffler kernel. Communications in Nonlinear Science and Numerical Simulation. 59, 444–462 (2018). | |
| dc.relation.references | [18] Hattaf K. On some properties of the new generalized fractional derivative with non-singular kernel. Mathematical Problems in Engineering. 2021, 1580396 (2021). | |
| dc.relation.references | [19] Hattaf K. On the Stability and Numerical Scheme of Fractional Differential Equations with Application to Biology. Computation. 10 (6), 97 (2022). | |
| dc.relation.referencesen | [1] Wong J. T.-F. Onthe Steady-State Method of Enzyme Kinetics. Journalof the AmericanChemical Society. 87 (8), 1788–1793 (1965). | |
| dc.relation.referencesen | [2] Michaelis L., Menten M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift. 49, 333–369 (1913). | |
| dc.relation.referencesen | [3] Cha S. Kinetic Behavior at High Enzyme Concentrations: Magnitude of errors of michaelis-menten and other approximations. Journal of Biological Chemistry. 245 (18), 4814–4818 (1970). | |
| dc.relation.referencesen | [4] Wald S., Wilke C. R., Blanch H. W. Kinetics of the enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering. 26 (3), 221–230 (1984). | |
| dc.relation.referencesen | [5] Najafpour G. D., Shan C. P. Enzymatic hydrolysis of molasses. Bioresource Technology. 86 (1), 91–94 (2003). | |
| dc.relation.referencesen | [6] Gan Q., Allen S. J., Taylor G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process Biochemistry. 38 (7), 1003–1018 (2003). | |
| dc.relation.referencesen | [7] Urban P. L., Goodall D. M., Bruce N. C. Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnology Advances. 24 (1), 42–57 (2006). | |
| dc.relation.referencesen | [8] Wong M. K. L., Krycer J. R., Burchfield J. G., James D. E., Kuncic Z. A generalised enzyme kinetic model for predicting the behaviour of complex biochemical systems. FEBS Open Bio. 5 (1), 226–239 (2015). | |
| dc.relation.referencesen | [9] Atangana A. Modeling the Enzyme Kinetic Reaction. Acta Biotheoretica. 63, 239–256 (2015). | |
| dc.relation.referencesen | [10] Milek J. Estimation of the Kinetic Parameters for H2O2 Enzymatic decomposition and for catalase deactivation. Brazilian Journal of Chemical Engineering. 35 (3), 995–1004 (2018). | |
| dc.relation.referencesen | [11] Khan M., Ahmed Z., Ali F., Khan N., Khan I., Nisar K. S. Dynamics of two-step reversible enzymatic reaction with Mittag–Leffler Kernel. PLoS ONE. 18 (3), e0277806 (2023). | |
| dc.relation.referencesen | [12] Atangana A., Baleanu D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Science. 20 (2), 763–769 (2016). | |
| dc.relation.referencesen | [13] Hattaf K. A new generalized definition of fractional derivative with non-singular kernel. Computation. 8 (2), 49 (2020). | |
| dc.relation.referencesen | [14] Caputo A., Fabrizio M. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications. 1 (2), 73–85 (2015). | |
| dc.relation.referencesen | [15] Al-Refai M. On weighted Atangana–Baleanufractional operators. Advances in Difference Equations. 2020, 3 (2020). | |
| dc.relation.referencesen | [16] Djida J. D., Atangana A., Area I. Numerical Computation of a Fractional Derivative with Non-Local and Non-Singular Kernel. Mathematical Modelling of Natural Phenomena. 12 (3), 4–13 (2017). | |
| dc.relation.referencesen | [17] Baleanu D., Fernandez A. On some new properties of fractional derivatives with Mittag–Leffler kernel. Communications in Nonlinear Science and Numerical Simulation. 59, 444–462 (2018). | |
| dc.relation.referencesen | [18] Hattaf K. On some properties of the new generalized fractional derivative with non-singular kernel. Mathematical Problems in Engineering. 2021, 1580396 (2021). | |
| dc.relation.referencesen | [19] Hattaf K. On the Stability and Numerical Scheme of Fractional Differential Equations with Application to Biology. Computation. 10 (6), 97 (2022). | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | ферментативна реакція | |
| dc.subject | дробова похідна Хаттафа | |
| dc.subject | теорія нерухомої точки | |
| dc.subject | чисельне моделювання | |
| dc.subject | enzymatic reaction | |
| dc.subject | Hattaf fractional derivative | |
| dc.subject | fixed point theory | |
| dc.subject | numerical simulations | |
| dc.title | Dynamics of enzyme kinetic model under the new generalized Hattaf fractional derivative | |
| dc.title.alternative | Динаміка ферментативної кінетичної моделі за новою узагальненою дробовою похідною Хаттафа | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1