Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study

dc.citation.epage342
dc.citation.issue3
dc.citation.spage336
dc.contributor.affiliationInstitute of Sorption and Problems of Endoecology of the NAS of Ukraine
dc.contributor.affiliationTechnical Center of the NAS of Ukraine
dc.contributor.affiliationFrantsevich Institute for Problems of Materials Science of the NAS of Ukraine
dc.contributor.authorPrudius, Svitlana
dc.contributor.authorHes, Natalia
dc.contributor.authorTrachevskiy, Volodymyr
dc.contributor.authorKhyzhun, Oleg
dc.contributor.authorBrei, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-09T11:31:47Z
dc.date.available2024-01-09T11:31:47Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractСуперкислотні потрійні ZrO2 SiO2 SnO2 оксиди (Н0 = –14.52) синтезовано золь-гель методом з атомним співвідношенням в межах: 20 ≤ Zr4+ ≤ 29, 60 ≤ Si4+ ≤ 67, 11 ≤ Sn4+ ≤ 20 %. Суперкислотність ZrO2 SiO2 SnO2 оксиду пояснена формуванням координаційно-ненасичених Zr4+ йонів, як сильних центрів Льюїса
dc.description.abstractSuperacid ternary ZrO2 SiO2 SnO2 oxide has been synthesized by the sol-gel method with a different atomic ratio Zr:Si:Sn. The highest strength of acid sites has been observed in the ranges of 20 ≤ Zr4+ ≤ 29, 60 ≤ Si4+ ≤ 67, 11 ≤ Sn4+ ≤ 20 at.%. According to the XPS spectra and 119Sn, 29Si MAS NMR spectra of ZrO2 SiO2 SnO2 a partial shift of electron density from zirconium to silicon ions was observed resulting in the formation of superacid Lewis sites. It was shown that superacid Zr29Si60Sn11 mixed oxide efficiently catalyzes acylation of toluene with acetic anhydride at 423 K in a flow reactor with 45% conversion of anhydride at 100% selectivity towards p-methylacetophenone.
dc.format.extent336-342
dc.format.pages7
dc.identifier.citationSuperacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study / Svitlana Prudius, Natalia Hes, Volodymyr Trachevskiy, Oleg Khyzhun, Volodymyr Brei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 336–342.
dc.identifier.citationenSuperacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study / Svitlana Prudius, Natalia Hes, Volodymyr Trachevskiy, Oleg Khyzhun, Volodymyr Brei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 336–342.
dc.identifier.doidoi.org/10.23939/chcht15.03.336
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60749
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (15), 2021
dc.relation.references[1] Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234
dc.relation.references[2] Arata K.: Adv. Catal., 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
dc.relation.references[3] Arata K., Matsuhashi H., Hino M., Nakamura H.: Catal. Today, 2003, 81, 17. https://doi.org/10.1016/S0920-5861(03)00098-1
dc.relation.references[4] Zazhigalov V., Strelko V., Khalamejda S. et al.: Proceedings of the DGMK-Conference "C4/C5-Hydrocarbons: Routes to Higher Value-Added Products", 2004, 209.
dc.relation.references[5] Jiang J., Yaghi O.: Chem. Rev., 2015, 115, 6966. https://doi.org/10.1021/acs.chemrev.5b00221
dc.relation.references[6] Jiang J., Gandara F., Zhang Y. et al.: J. Am. Chem. Soc., 2014, 136, 12844. https://doi.org/10.1021/ja507119n
dc.relation.references[7] Sun Q., Hu K., Leng K. et al.: J. Mater. Chem. A, 2018, 6, 18712. https://doi.org/10.1039/C8TA06516K
dc.relation.references[8] Prudius S., Melezhyk O., Brei V.: Stud. Surf. Sci. Catal., 2010, 175, 233. https://doi.org/10.1016/S0167-2991(10)75031-X
dc.relation.references[9] Inshina O., Korduban A., Tel’biz G., Brei V.: Adsorpt. Sci. Technol., 2017, 35, 439. https://doi.org/10.1177/0263617417694887
dc.relation.references[10] Bosman H., Kruissink E., Vanderspoel J., Vandenbrink F.: J. Catal., 1994, 148, 660. https://doi.org/10.1006/jcat.1994.1253
dc.relation.references[11] Tanabe K.: Solid Acid and Bases. Their Catalytic Properties. Academic Press, New-York-London 1970.
dc.relation.references[12] Tanabe K., Misono M., Hattori H., Ono Y: New Solid Acids and Bases – Their Catalytic Properties, 1st edn. Elsevier Science, Amsterdam 1989, 124.
dc.relation.references[13] Barton D., Shtein M., Wilson R. et al.: J. Phys. Chem. B, 1999, 103, 630. https://doi.org/10.1021/jp983555d
dc.relation.references[14] Rajagopal S., Nataraj D., Khyzhun O. et al.: Cryst. Eng. Comm., 2011, 13, 2358. https://doi.org/10.1039/C0CE00303D
dc.relation.references[15] Khalameida S., Samsonenko M., Sydorchuk V. et al.: Theor. Exp. Chem., 2017, 53, 40. https://doi.org/10.1007/s11237-017-9499-5
dc.relation.references[16] Manjunathan P., Marakatti V., Chandra P. et al.: Catal. Today, 2018, 309, 61. https://doi.org/10.1016/j.cattod.2017.10.009
dc.relation.references[17] Bhagwat M., Shah P., Ramaswamy V.: Mater. Lett., 2003, 57, 1604. https://doi.org/10.1016/S0167-577X(02)01040-6
dc.relation.references[18] Corma A., Nemeth L., Renz M., Valencia S.: Nature, 2001, 412, 423. https://doi.org/10.1038/35086546
dc.relation.references[19] Moulder J., Stickle W., Sobol P., Bomben K.: Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Perkin-Elmer Corporation Physical Electronics Division, USA 1992.
dc.relation.references[20] Guittet M., Crocombette J., Gautier-Soyer M.: Phys. Rev. B, 2001, 63, 125117. https://doi.org/10.1103/PhysRevB.63.125117
dc.relation.references[21] Botella P., Corma A., Lopez-Nieto J. et al.: J. Catal., 2000, 195, 161. https://doi.org/10.1006/jcat.2000.2971
dc.relation.referencesen[1] Patrylak L., Krylova M., Pertko O. et al., Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234
dc.relation.referencesen[2] Arata K., Adv. Catal., 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X
dc.relation.referencesen[3] Arata K., Matsuhashi H., Hino M., Nakamura H., Catal. Today, 2003, 81, 17. https://doi.org/10.1016/S0920-5861(03)00098-1
dc.relation.referencesen[4] Zazhigalov V., Strelko V., Khalamejda S. et al., Proceedings of the DGMK-Conference "P.4/P.5-Hydrocarbons: Routes to Higher Value-Added Products", 2004, 209.
dc.relation.referencesen[5] Jiang J., Yaghi O., Chem. Rev., 2015, 115, 6966. https://doi.org/10.1021/acs.chemrev.5b00221
dc.relation.referencesen[6] Jiang J., Gandara F., Zhang Y. et al., J. Am. Chem. Soc., 2014, 136, 12844. https://doi.org/10.1021/ja507119n
dc.relation.referencesen[7] Sun Q., Hu K., Leng K. et al., J. Mater. Chem. A, 2018, 6, 18712. https://doi.org/10.1039/P.8TA06516K
dc.relation.referencesen[8] Prudius S., Melezhyk O., Brei V., Stud. Surf. Sci. Catal., 2010, 175, 233. https://doi.org/10.1016/S0167-2991(10)75031-X
dc.relation.referencesen[9] Inshina O., Korduban A., Tel’biz G., Brei V., Adsorpt. Sci. Technol., 2017, 35, 439. https://doi.org/10.1177/0263617417694887
dc.relation.referencesen[10] Bosman H., Kruissink E., Vanderspoel J., Vandenbrink F., J. Catal., 1994, 148, 660. https://doi.org/10.1006/jcat.1994.1253
dc.relation.referencesen[11] Tanabe K., Solid Acid and Bases. Their Catalytic Properties. Academic Press, New-York-London 1970.
dc.relation.referencesen[12] Tanabe K., Misono M., Hattori H., Ono Y: New Solid Acids and Bases – Their Catalytic Properties, 1st edn. Elsevier Science, Amsterdam 1989, 124.
dc.relation.referencesen[13] Barton D., Shtein M., Wilson R. et al., J. Phys. Chem. B, 1999, 103, 630. https://doi.org/10.1021/jp983555d
dc.relation.referencesen[14] Rajagopal S., Nataraj D., Khyzhun O. et al., Cryst. Eng. Comm., 2011, 13, 2358. https://doi.org/10.1039/P.0CE00303D
dc.relation.referencesen[15] Khalameida S., Samsonenko M., Sydorchuk V. et al., Theor. Exp. Chem., 2017, 53, 40. https://doi.org/10.1007/s11237-017-9499-5
dc.relation.referencesen[16] Manjunathan P., Marakatti V., Chandra P. et al., Catal. Today, 2018, 309, 61. https://doi.org/10.1016/j.cattod.2017.10.009
dc.relation.referencesen[17] Bhagwat M., Shah P., Ramaswamy V., Mater. Lett., 2003, 57, 1604. https://doi.org/10.1016/S0167-577X(02)01040-6
dc.relation.referencesen[18] Corma A., Nemeth L., Renz M., Valencia S., Nature, 2001, 412, 423. https://doi.org/10.1038/35086546
dc.relation.referencesen[19] Moulder J., Stickle W., Sobol P., Bomben K., Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Perkin-Elmer Corporation Physical Electronics Division, USA 1992.
dc.relation.referencesen[20] Guittet M., Crocombette J., Gautier-Soyer M., Phys. Rev. B, 2001, 63, 125117. https://doi.org/10.1103/PhysRevB.63.125117
dc.relation.referencesen[21] Botella P., Corma A., Lopez-Nieto J. et al., J. Catal., 2000, 195, 161. https://doi.org/10.1006/jcat.2000.2971
dc.relation.urihttps://doi.org/10.23939/chcht14.02.234
dc.relation.urihttps://doi.org/10.1016/S0360-0564(08)60365-X
dc.relation.urihttps://doi.org/10.1016/S0920-5861(03)00098-1
dc.relation.urihttps://doi.org/10.1021/acs.chemrev.5b00221
dc.relation.urihttps://doi.org/10.1021/ja507119n
dc.relation.urihttps://doi.org/10.1039/C8TA06516K
dc.relation.urihttps://doi.org/10.1016/S0167-2991(10)75031-X
dc.relation.urihttps://doi.org/10.1177/0263617417694887
dc.relation.urihttps://doi.org/10.1006/jcat.1994.1253
dc.relation.urihttps://doi.org/10.1021/jp983555d
dc.relation.urihttps://doi.org/10.1039/C0CE00303D
dc.relation.urihttps://doi.org/10.1007/s11237-017-9499-5
dc.relation.urihttps://doi.org/10.1016/j.cattod.2017.10.009
dc.relation.urihttps://doi.org/10.1016/S0167-577X(02)01040-6
dc.relation.urihttps://doi.org/10.1038/35086546
dc.relation.urihttps://doi.org/10.1103/PhysRevB.63.125117
dc.relation.urihttps://doi.org/10.1006/jcat.2000.2971
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Prudius S., Hes N., Trachevskiy V., Khyzhun O., Brei V., 2021
dc.subjectтверда суперкислота
dc.subjectпотрійний оксид
dc.subjectдіоксид олова
dc.subjectсила кислотних центрів
dc.subjectцентри Льюїса
dc.subjectsolid superacid
dc.subjectternary oxide
dc.subjecttin dioxide
dc.subjectacid strength
dc.subjectLewis sites
dc.titleSuperacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study
dc.title.alternativeСуперкислотний ZrO2–SiO2–SnO2 змішаний оксид: синтез та дослідження
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v15n3_Prudius_S-Superacid_ZrO2_SiO2_SnO2_336-342.pdf
Size:
553.04 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v15n3_Prudius_S-Superacid_ZrO2_SiO2_SnO2_336-342__COVER.png
Size:
523.21 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: