Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study
dc.citation.epage | 342 | |
dc.citation.issue | 3 | |
dc.citation.spage | 336 | |
dc.contributor.affiliation | Institute of Sorption and Problems of Endoecology of the NAS of Ukraine | |
dc.contributor.affiliation | Technical Center of the NAS of Ukraine | |
dc.contributor.affiliation | Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine | |
dc.contributor.author | Prudius, Svitlana | |
dc.contributor.author | Hes, Natalia | |
dc.contributor.author | Trachevskiy, Volodymyr | |
dc.contributor.author | Khyzhun, Oleg | |
dc.contributor.author | Brei, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T11:31:47Z | |
dc.date.available | 2024-01-09T11:31:47Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Суперкислотні потрійні ZrO2 SiO2 SnO2 оксиди (Н0 = –14.52) синтезовано золь-гель методом з атомним співвідношенням в межах: 20 ≤ Zr4+ ≤ 29, 60 ≤ Si4+ ≤ 67, 11 ≤ Sn4+ ≤ 20 %. Суперкислотність ZrO2 SiO2 SnO2 оксиду пояснена формуванням координаційно-ненасичених Zr4+ йонів, як сильних центрів Льюїса | |
dc.description.abstract | Superacid ternary ZrO2 SiO2 SnO2 oxide has been synthesized by the sol-gel method with a different atomic ratio Zr:Si:Sn. The highest strength of acid sites has been observed in the ranges of 20 ≤ Zr4+ ≤ 29, 60 ≤ Si4+ ≤ 67, 11 ≤ Sn4+ ≤ 20 at.%. According to the XPS spectra and 119Sn, 29Si MAS NMR spectra of ZrO2 SiO2 SnO2 a partial shift of electron density from zirconium to silicon ions was observed resulting in the formation of superacid Lewis sites. It was shown that superacid Zr29Si60Sn11 mixed oxide efficiently catalyzes acylation of toluene with acetic anhydride at 423 K in a flow reactor with 45% conversion of anhydride at 100% selectivity towards p-methylacetophenone. | |
dc.format.extent | 336-342 | |
dc.format.pages | 7 | |
dc.identifier.citation | Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study / Svitlana Prudius, Natalia Hes, Volodymyr Trachevskiy, Oleg Khyzhun, Volodymyr Brei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 336–342. | |
dc.identifier.citationen | Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study / Svitlana Prudius, Natalia Hes, Volodymyr Trachevskiy, Oleg Khyzhun, Volodymyr Brei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 336–342. | |
dc.identifier.doi | doi.org/10.23939/chcht15.03.336 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60749 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (15), 2021 | |
dc.relation.references | [1] Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.references | [2] Arata K.: Adv. Catal., 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X | |
dc.relation.references | [3] Arata K., Matsuhashi H., Hino M., Nakamura H.: Catal. Today, 2003, 81, 17. https://doi.org/10.1016/S0920-5861(03)00098-1 | |
dc.relation.references | [4] Zazhigalov V., Strelko V., Khalamejda S. et al.: Proceedings of the DGMK-Conference "C4/C5-Hydrocarbons: Routes to Higher Value-Added Products", 2004, 209. | |
dc.relation.references | [5] Jiang J., Yaghi O.: Chem. Rev., 2015, 115, 6966. https://doi.org/10.1021/acs.chemrev.5b00221 | |
dc.relation.references | [6] Jiang J., Gandara F., Zhang Y. et al.: J. Am. Chem. Soc., 2014, 136, 12844. https://doi.org/10.1021/ja507119n | |
dc.relation.references | [7] Sun Q., Hu K., Leng K. et al.: J. Mater. Chem. A, 2018, 6, 18712. https://doi.org/10.1039/C8TA06516K | |
dc.relation.references | [8] Prudius S., Melezhyk O., Brei V.: Stud. Surf. Sci. Catal., 2010, 175, 233. https://doi.org/10.1016/S0167-2991(10)75031-X | |
dc.relation.references | [9] Inshina O., Korduban A., Tel’biz G., Brei V.: Adsorpt. Sci. Technol., 2017, 35, 439. https://doi.org/10.1177/0263617417694887 | |
dc.relation.references | [10] Bosman H., Kruissink E., Vanderspoel J., Vandenbrink F.: J. Catal., 1994, 148, 660. https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.references | [11] Tanabe K.: Solid Acid and Bases. Their Catalytic Properties. Academic Press, New-York-London 1970. | |
dc.relation.references | [12] Tanabe K., Misono M., Hattori H., Ono Y: New Solid Acids and Bases – Their Catalytic Properties, 1st edn. Elsevier Science, Amsterdam 1989, 124. | |
dc.relation.references | [13] Barton D., Shtein M., Wilson R. et al.: J. Phys. Chem. B, 1999, 103, 630. https://doi.org/10.1021/jp983555d | |
dc.relation.references | [14] Rajagopal S., Nataraj D., Khyzhun O. et al.: Cryst. Eng. Comm., 2011, 13, 2358. https://doi.org/10.1039/C0CE00303D | |
dc.relation.references | [15] Khalameida S., Samsonenko M., Sydorchuk V. et al.: Theor. Exp. Chem., 2017, 53, 40. https://doi.org/10.1007/s11237-017-9499-5 | |
dc.relation.references | [16] Manjunathan P., Marakatti V., Chandra P. et al.: Catal. Today, 2018, 309, 61. https://doi.org/10.1016/j.cattod.2017.10.009 | |
dc.relation.references | [17] Bhagwat M., Shah P., Ramaswamy V.: Mater. Lett., 2003, 57, 1604. https://doi.org/10.1016/S0167-577X(02)01040-6 | |
dc.relation.references | [18] Corma A., Nemeth L., Renz M., Valencia S.: Nature, 2001, 412, 423. https://doi.org/10.1038/35086546 | |
dc.relation.references | [19] Moulder J., Stickle W., Sobol P., Bomben K.: Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Perkin-Elmer Corporation Physical Electronics Division, USA 1992. | |
dc.relation.references | [20] Guittet M., Crocombette J., Gautier-Soyer M.: Phys. Rev. B, 2001, 63, 125117. https://doi.org/10.1103/PhysRevB.63.125117 | |
dc.relation.references | [21] Botella P., Corma A., Lopez-Nieto J. et al.: J. Catal., 2000, 195, 161. https://doi.org/10.1006/jcat.2000.2971 | |
dc.relation.referencesen | [1] Patrylak L., Krylova M., Pertko O. et al., Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.referencesen | [2] Arata K., Adv. Catal., 1990, 37, 165. https://doi.org/10.1016/S0360-0564(08)60365-X | |
dc.relation.referencesen | [3] Arata K., Matsuhashi H., Hino M., Nakamura H., Catal. Today, 2003, 81, 17. https://doi.org/10.1016/S0920-5861(03)00098-1 | |
dc.relation.referencesen | [4] Zazhigalov V., Strelko V., Khalamejda S. et al., Proceedings of the DGMK-Conference "P.4/P.5-Hydrocarbons: Routes to Higher Value-Added Products", 2004, 209. | |
dc.relation.referencesen | [5] Jiang J., Yaghi O., Chem. Rev., 2015, 115, 6966. https://doi.org/10.1021/acs.chemrev.5b00221 | |
dc.relation.referencesen | [6] Jiang J., Gandara F., Zhang Y. et al., J. Am. Chem. Soc., 2014, 136, 12844. https://doi.org/10.1021/ja507119n | |
dc.relation.referencesen | [7] Sun Q., Hu K., Leng K. et al., J. Mater. Chem. A, 2018, 6, 18712. https://doi.org/10.1039/P.8TA06516K | |
dc.relation.referencesen | [8] Prudius S., Melezhyk O., Brei V., Stud. Surf. Sci. Catal., 2010, 175, 233. https://doi.org/10.1016/S0167-2991(10)75031-X | |
dc.relation.referencesen | [9] Inshina O., Korduban A., Tel’biz G., Brei V., Adsorpt. Sci. Technol., 2017, 35, 439. https://doi.org/10.1177/0263617417694887 | |
dc.relation.referencesen | [10] Bosman H., Kruissink E., Vanderspoel J., Vandenbrink F., J. Catal., 1994, 148, 660. https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.referencesen | [11] Tanabe K., Solid Acid and Bases. Their Catalytic Properties. Academic Press, New-York-London 1970. | |
dc.relation.referencesen | [12] Tanabe K., Misono M., Hattori H., Ono Y: New Solid Acids and Bases – Their Catalytic Properties, 1st edn. Elsevier Science, Amsterdam 1989, 124. | |
dc.relation.referencesen | [13] Barton D., Shtein M., Wilson R. et al., J. Phys. Chem. B, 1999, 103, 630. https://doi.org/10.1021/jp983555d | |
dc.relation.referencesen | [14] Rajagopal S., Nataraj D., Khyzhun O. et al., Cryst. Eng. Comm., 2011, 13, 2358. https://doi.org/10.1039/P.0CE00303D | |
dc.relation.referencesen | [15] Khalameida S., Samsonenko M., Sydorchuk V. et al., Theor. Exp. Chem., 2017, 53, 40. https://doi.org/10.1007/s11237-017-9499-5 | |
dc.relation.referencesen | [16] Manjunathan P., Marakatti V., Chandra P. et al., Catal. Today, 2018, 309, 61. https://doi.org/10.1016/j.cattod.2017.10.009 | |
dc.relation.referencesen | [17] Bhagwat M., Shah P., Ramaswamy V., Mater. Lett., 2003, 57, 1604. https://doi.org/10.1016/S0167-577X(02)01040-6 | |
dc.relation.referencesen | [18] Corma A., Nemeth L., Renz M., Valencia S., Nature, 2001, 412, 423. https://doi.org/10.1038/35086546 | |
dc.relation.referencesen | [19] Moulder J., Stickle W., Sobol P., Bomben K., Handbook of X-ray Photoelectron Spectroscopy, 1st edn. Perkin-Elmer Corporation Physical Electronics Division, USA 1992. | |
dc.relation.referencesen | [20] Guittet M., Crocombette J., Gautier-Soyer M., Phys. Rev. B, 2001, 63, 125117. https://doi.org/10.1103/PhysRevB.63.125117 | |
dc.relation.referencesen | [21] Botella P., Corma A., Lopez-Nieto J. et al., J. Catal., 2000, 195, 161. https://doi.org/10.1006/jcat.2000.2971 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.uri | https://doi.org/10.1016/S0360-0564(08)60365-X | |
dc.relation.uri | https://doi.org/10.1016/S0920-5861(03)00098-1 | |
dc.relation.uri | https://doi.org/10.1021/acs.chemrev.5b00221 | |
dc.relation.uri | https://doi.org/10.1021/ja507119n | |
dc.relation.uri | https://doi.org/10.1039/C8TA06516K | |
dc.relation.uri | https://doi.org/10.1016/S0167-2991(10)75031-X | |
dc.relation.uri | https://doi.org/10.1177/0263617417694887 | |
dc.relation.uri | https://doi.org/10.1006/jcat.1994.1253 | |
dc.relation.uri | https://doi.org/10.1021/jp983555d | |
dc.relation.uri | https://doi.org/10.1039/C0CE00303D | |
dc.relation.uri | https://doi.org/10.1007/s11237-017-9499-5 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2017.10.009 | |
dc.relation.uri | https://doi.org/10.1016/S0167-577X(02)01040-6 | |
dc.relation.uri | https://doi.org/10.1038/35086546 | |
dc.relation.uri | https://doi.org/10.1103/PhysRevB.63.125117 | |
dc.relation.uri | https://doi.org/10.1006/jcat.2000.2971 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Prudius S., Hes N., Trachevskiy V., Khyzhun O., Brei V., 2021 | |
dc.subject | тверда суперкислота | |
dc.subject | потрійний оксид | |
dc.subject | діоксид олова | |
dc.subject | сила кислотних центрів | |
dc.subject | центри Льюїса | |
dc.subject | solid superacid | |
dc.subject | ternary oxide | |
dc.subject | tin dioxide | |
dc.subject | acid strength | |
dc.subject | Lewis sites | |
dc.title | Superacid ZrO2-SiO2-SnO2 Mixed Oxide: Synthesis and Study | |
dc.title.alternative | Суперкислотний ZrO2–SiO2–SnO2 змішаний оксид: синтез та дослідження | |
dc.type | Article |
Files
License bundle
1 - 1 of 1