Бінарні лінійні перетворення в модифікаціях алгоритму RSA шифрування зображень
dc.citation.epage | 42 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Український журнал інформаційних технологій | |
dc.citation.spage | 37 | |
dc.citation.volume | 2 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Ковальчук, А. М. | |
dc.contributor.author | Kovalchuk, A. M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2022-05-24T11:10:10Z | |
dc.date.available | 2022-05-24T11:10:10Z | |
dc.date.created | 2020-09-23 | |
dc.date.issued | 2020-09-23 | |
dc.description.abstract | Розглянуто бінарні лінійні перетворення в модифікаціях алгоритму RSA шифрування зображень, які побудовані так, що при малих значеннях ключа можна досягти якісного шифрування, але за умови, правильного підбору параметрів ключа шифрування, внаслідок чого досягається висока швидкість роботи алгоритму. Оскільки зображення є одними із найбільш уживаних видів інформації в сучасному інформаційному суспільстві, то актуальним завданням є його захист від несанкціонованого доступу та використання. Важливою характеристикою зображення є наявність в ньому контурів, завдання виділення якого вимагає використання операцій над сусідніми елементами, які є чутливими до змін і пригашають області постійних рівнів яскравості. Отже, контури – це ті області, де виникають зміни, стаючи світлими, тоді як інші частини зображення залишаються темними. Математично – ідеальний контур представляє розрив просторової функції рівнів яскравості в площині зображення. Тому виокремлення контура означає пошук найбільш різких змін, тобто максимумів модуля вектора градієнта. Це є однією з причин, через що контури залишаються в зображенні при шифруванні в системі RSA, оскільки шифрування тут базується на піднесенні до степеня по модулю деякого натурального числа. При цьому, на контурі й на сусідніх до контура пікселах піднесення до степеня значення яскравостей дає ще більший розрив. Проблема захисту від несанкціонованого доступу є складнішою порівняно з проблемою захисту використання. Основним базисом для організації захисту зображення є таке припущення: зображення – це стохастичний сигнал. Це спричинює перенесення класичних методів шифрування сигналів на випадок зображень. Але зображення є специфічним сигналом, який володіє, в додаток до типової інформативності (інформативності даних), ще й візуальною інформативністю. В зв'язку з цим до методів шифрування у випадку їх використання стосовно зображень висувається ще одна вимога-повна зашумленість зашифрованого зображення. Це потрібно для того, щоб унеможливити використання методів візуального оброблення зображень. Алгоритм RSA є одним із промислових стандартів шифрування сигналів. За відношенням до зображення існують певні проблеми його шифрування, а саме: частково зберігаються контури на різко флуктуаційних зображеннях. Тому актуальним завданням є розроблення модифікації методу RSA такої, щоб: зберегти стійкість до дешифрування; забезпечити повну зашумленість зображення, з метою унеможливити використання методів візуального оброблення зображень. Одним із шляхів вирішення цього завдання є використання бінарних афінних перетворень. | |
dc.description.abstract | The images are one of the most used kinds of the information in modern information company. Therefore actual problems is the organization of protection from unauthorized access and usage. An important characteristic of the image is the presence of contours in the image. The task of contour selection requires the use of operations on adjacent elements that are sensitive to change and suppress areas of constant levels of brightness, that is, contours are those areas where changes occur, becoming light, while other parts of the image remain dark. Mathematically, the ideal outline is to break the spatial function of the brightness levels in the image plane. Therefore, contour selection means finding the most dramatic changes, that is, the maxima of the gradient vector module. This is one of the reasons that the contours remain in the image when encrypted in the RSA system, since the encryption here is based on a modular elevation of some natural number. At the same time, on the contour and on the neighboring contours of the peak villages, the elevation of the brightness value gives an even bigger gap. Problem protect from unauthorized access is by more composite in matching with a problem protect from usage. Basis for organization of protection is the interpretation of the image as stochastic signal. It stipulates carry of methods of encoding of signals on a case of the images. But the images are a specific signal, which one in possesses, is padding to representative selfless creativeness, also by visual selfless creativeness. Therefore to methods of encoding, in case of their usage concerning the images, one more requirement – full noise of the coded image is put forward. It is necessary to make to impossible usage of methods of visual image processing. The algorithm RSA is one of the most used production specifications of encoding of signals. In attitude of the images there are some problems of its encoding, the contours on the coded image are in particular saved. Therefore actual problem is the mining of modification to a method RSA such, that: to supply stability to decoding; to supply full noise of the images. One solution of this problem is usage of affine transformations. | |
dc.format.extent | 37-42 | |
dc.format.pages | 6 | |
dc.identifier.citation | Ковальчук А. М. Бінарні лінійні перетворення в модифікаціях алгоритму RSA шифрування зображень / А. М. Ковальчук // Український журнал інформаційних технологій. — Львів : Видавництво Львівської політехніки, 2020. — Том 2. — № 1. — С. 37–42. | |
dc.identifier.citationen | Kovalchuk A. M. Binary linear transformations in modifications of RSA algorithm of images / A. M. Kovalchuk // Ukrainian Journal of Information Technology. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2020. — Vol 2. — No 1. — P. 37–42. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/56900 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.relation.ispartof | Український журнал інформаційних технологій, 1 (2), 2020 | |
dc.relation.ispartof | Ukrainian Journal of Information Technology, 1 (2), 2020 | |
dc.relation.references | [1] Gryciuk, Yu., & Grytsyuk, P. (2015). Perfecting of the matrix Affine cryptosystem information security. Computer Science and Information Technologies: Proceedings of Xth International Scientific and Technical Conference (CSIT'2015), 14–17 September, 2015. pp. 67–69. https://doi.org/10.1109/stc-csit.2015.7325433 | |
dc.relation.references | [2] Gryciuk, Yu. I., & Grytsyuk, P. Yu. (2015). Mathematical Foundations of the generation of keys using a permutation cipher Cardano. Scientific Bulletin of UNFU, 25(10), 311–323. https://doi.org/10.15421/40251048 | |
dc.relation.references | [3] Hrytsiuk, Yu., & Grytsyuk, P, Dyak, T., & Hrynyk, H. (2019). Software Development Risk Modeling. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), (Vol. 2, pp. 134–137), 17–20 September, 2019. https://doi.org/10.1109/stc-csit.2019.8929778 | |
dc.relation.references | [4] Iane, B. (2007). Tcifrovaia obrabotka izobrazhenii. Moscow: Tekhnosfera. 583 p. [In Russian]. | |
dc.relation.references | [5] Kovalchuk, A., Izonin, I., Strauss, C., & Kustra, N. (2019). Image encryption and decryption schemes using linear and quadratic fractal algorithms and their systems. 1-st InternatiUkrainian Journal of Information Technology, 2020, 42 vol. 2, no. 1 onal Workshop on Digital Content and Smart Multimedia, DCSMart, 2019. Lviv, Ukraine. | |
dc.relation.references | [6] Netravali, A. N., & Limb, D. O. (1980). Kodirovanie izobrazhenii: obzor. TIIER, 68(3), 76–117. [In Russian]. | |
dc.relation.references | [7] Pavlidis, T. (1986). Algoritmy mashinoi grafiki i obrabotki izobrazhenii. Moscow: Radio i sviaz. [In Russian]. | |
dc.relation.references | [8] Rashkevych, Y., Kovalchuk, A., Peleshko, D., & Kupchak, M. (2009). Stream Modification of RSA algorithm for image coding with precize contour extraction. Proceedings of the Xth International Conference CADSM, 2009. Lviv-Polyana, Ukraine. | |
dc.relation.references | [9] Rashkevych, Yu. M., Peleshko, D. D., Kovalchuk, A. M., & Peleshko, M. Z. (2008). Modyfikatsiia alhorytmu RSA dlia deiakykh klasiv zobrazhen. Tekhnichni visti, 1(27), 2(28), 59–62. [In Ukrainian]. | |
dc.relation.references | [10] Shnaier, B. (2003). Prikladnaia kriptografiia. Moscow: Triumf. 815 p. [In Russian]. | |
dc.relation.referencesen | [1] Gryciuk, Yu., & Grytsyuk, P. (2015). Perfecting of the matrix Affine cryptosystem information security. Computer Science and Information Technologies: Proceedings of Xth International Scientific and Technical Conference (CSIT'2015), 14–17 September, 2015. pp. 67–69. https://doi.org/10.1109/stc-csit.2015.7325433 | |
dc.relation.referencesen | [2] Gryciuk, Yu. I., & Grytsyuk, P. Yu. (2015). Mathematical Foundations of the generation of keys using a permutation cipher Cardano. Scientific Bulletin of UNFU, 25(10), 311–323. https://doi.org/10.15421/40251048 | |
dc.relation.referencesen | [3] Hrytsiuk, Yu., & Grytsyuk, P, Dyak, T., & Hrynyk, H. (2019). Software Development Risk Modeling. IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2019), (Vol. 2, pp. 134–137), 17–20 September, 2019. https://doi.org/10.1109/stc-csit.2019.8929778 | |
dc.relation.referencesen | [4] Iane, B. (2007). Tcifrovaia obrabotka izobrazhenii. Moscow: Tekhnosfera. 583 p. [In Russian]. | |
dc.relation.referencesen | [5] Kovalchuk, A., Izonin, I., Strauss, C., & Kustra, N. (2019). Image encryption and decryption schemes using linear and quadratic fractal algorithms and their systems. 1-st InternatiUkrainian Journal of Information Technology, 2020, 42 vol. 2, no. 1 onal Workshop on Digital Content and Smart Multimedia, DCSMart, 2019. Lviv, Ukraine. | |
dc.relation.referencesen | [6] Netravali, A. N., & Limb, D. O. (1980). Kodirovanie izobrazhenii: obzor. TIIER, 68(3), 76–117. [In Russian]. | |
dc.relation.referencesen | [7] Pavlidis, T. (1986). Algoritmy mashinoi grafiki i obrabotki izobrazhenii. Moscow: Radio i sviaz. [In Russian]. | |
dc.relation.referencesen | [8] Rashkevych, Y., Kovalchuk, A., Peleshko, D., & Kupchak, M. (2009). Stream Modification of RSA algorithm for image coding with precize contour extraction. Proceedings of the Xth International Conference CADSM, 2009. Lviv-Polyana, Ukraine. | |
dc.relation.referencesen | [9] Rashkevych, Yu. M., Peleshko, D. D., Kovalchuk, A. M., & Peleshko, M. Z. (2008). Modyfikatsiia alhorytmu RSA dlia deiakykh klasiv zobrazhen. Tekhnichni visti, 1(27), 2(28), 59–62. [In Ukrainian]. | |
dc.relation.referencesen | [10] Shnaier, B. (2003). Prikladnaia kriptografiia. Moscow: Triumf. 815 p. [In Russian]. | |
dc.relation.uri | https://doi.org/10.1109/stc-csit.2015.7325433 | |
dc.relation.uri | https://doi.org/10.15421/40251048 | |
dc.relation.uri | https://doi.org/10.1109/stc-csit.2019.8929778 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.subject | шифрування | |
dc.subject | дешифрування | |
dc.subject | бінарне перетворення | |
dc.subject | зображення | |
dc.subject | encryption | |
dc.subject | decryption | |
dc.subject | binary transformation | |
dc.subject | image | |
dc.title | Бінарні лінійні перетворення в модифікаціях алгоритму RSA шифрування зображень | |
dc.title.alternative | Binary linear transformations in modifications of RSA algorithm of images | |
dc.type | Article |
Files
License bundle
1 - 1 of 1