Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility

dc.citation.epage799
dc.citation.issue4
dc.citation.spage796
dc.contributor.affiliationUniversity of North Texas
dc.contributor.affiliationMenoufia University
dc.contributor.authorBrostow, Witold
dc.contributor.authorHaley E. Hagg Lobland
dc.contributor.authorHamad, Nora A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:08Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОтримано рівняння для полімерів, яке пов'язує їхню гнучкість Y, визначену в 2019 році, з лінійною ізобарною термічною розширюваністю αL. Таким чином ми кількісно пов'язали термодинамічну властивість з механічною. Розширюваність важлива, оскільки різні матеріали розширюються з різною швидкістю з підвищенням температури; те ж саме стосується і стиснення в результаті охолодження. Отже, зміна температури може спричинити дезінтеграцію композиту без застосування механічної сили.
dc.description.abstractWe have obtained an equation for polymers relating their flexibility Y defined in 2019 to the linear isobaric thermal expansivity αL. This way we have connected quantitatively a thermodynamic property to a mechanical one. The expansivity is important since different materials expand at different rates on the increase of temperature; the same applies to contraction resulting from cooling. Thus, a temperature change can cause disintegration of a composite with no mechanical force involved.
dc.format.extent796-799
dc.format.pages4
dc.identifier.citationBrostow W. Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility / Witold Brostow, Haley E. Hagg Lobland, Nora A. Hamad // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 796–799.
dc.identifier.citationenBrostow W. Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility / Witold Brostow, Haley E. Hagg Lobland, Nora A. Hamad // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 796–799.
dc.identifier.doidoi.org/10.23939/chcht17.04.796
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63689
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Hambleton, R.; Naylor, D. Innovative on-Line Learning of Ferrous Metallurgy.J. Mater. Ed. 2007, 29, 67-78.
dc.relation.references[2] Meseguer-Valdenebro, J.L.; Miguel, V.;Caravaca, M.;Portolés, A.;Gimeno, F. Teaching Mechanical Properties of Different Steels for Engineering Students.J. Mater. Ed. 2015, 37, 103-118.
dc.relation.references[3] Wadood, A.;Ozair, H.;Muhyuddin, M. Titanium Based Shape Memory Alloys from Materials Education Point of View.J. Mater. Ed. 2019, 41,137-148.
dc.relation.references[4] Brostow, W.;HaggLobland, H.E.;Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers.J. Mater. Res. 2006, 21, 2422.
dc.relation.references[5] Lucas, E.F.;Soares, B.G.; Monteiro, E. Caracterização de polimeros; e-papers ServiçosEditoriaisLtda: Rio de Janeiro, 2001.
dc.relation.references[6] Gedde, U.W.; Hedenqvist, M.S. Fundamental Polymer Science, 2ndEdition; Springer Nature Switzerland AG, 2019.
dc.relation.references[7] Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis, 3rdEdition; CRC Press Boca Raton FL, 2020.
dc.relation.references[8] Lu, S.; Lin, J.; Liu, K.; Yue, S.; Ren, K.; Tan, F.; Whang, Z.; Jin, P.; Qu, S.; Whang, Z. Large Area Flexible Polymer Solar Cells with High Efficiency Enabled by Imprinted Ag Grid and Modified Buffer Layer.Acta Mater. 2017, 130, 208-214. https://doi.org/10.1016/j.actamat.2017.03.050
dc.relation.references[9] Cordill, M.J.; Fischer, F.D.;Rammerstorfer, F.G.;Dehm, G. Adhesion Energies of Cr Thin Films on Polyimide Determined from Buckling: Experiment and Model.Acta Mater. 2010, 58, 5520-5531. https://doi.org/10.1016/j.actamat.2010.06.032
dc.relation.references[10] Katerelos, D.G.; McCartney, L.N.;Galiotis, C. Local Strain re-Distribution and Stiffness Degradation in Cross-Ply Polymer Composites under Tension.Acta Mater. 2005, 53, 3335-3343. https://doi.org/10.1016/j.actamat.2005.03.045
dc.relation.references[11] Brostow, W.;HaggLobland, H.E.; Hong, H.J.; Lohse, S.;Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction.J. Mater. Sci. Res. 2019, 8, 31-35. https://doi.org/10.5539/jmsr.v8n3p31
dc.relation.references[12] Pauling, L. The Chemical Bond and the Structure of Molecules and Crystals, 3rdEdition; Cornell University Press: Ithaca, NY, 1960.
dc.relation.references[13] Brostow, W.;Fałtynowicz, H.;Gencel, O.;Grigoriev, A.;HaggLobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites.Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514
dc.relation.references[14] Brostow, W.;HaggLobland, H.E. Brittleness of Materials: Implications for Composites and Relation to Impact Strength.J. Mater. Sci. 2010, 45, 242-250. https://doi.org/10.1007/s10853-009-3926-5
dc.relation.references[15] Brostow, W.; Osmanson, A.T. From Mechanics to Thermodynamics: A Relation between the Brittleness and the Thermal Expansivity for Polymers.Materials Letters: X 2019, 1, 100005. https://doi.org/10.1016/j.mlblux.2019.100005
dc.relation.references[16] Brostow, W.; HaggLobland, H.E. Survey of Relations of Chemical Constituents in Polymer-Based Materials with Brittleness and its Associated Properties. Chem. Chem. Technol. 2016, 10, 595-600. https://doi.org/10.23939/chcht10.04si.595
dc.relation.references[17] Kelvin, William Thomson. Motions of Viscous Liquid.Mathematical and physical papers1890, 436-465.
dc.relation.references[18] Brostow, W.; HaggLobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017.
dc.relation.references[19] Tóth, L.F.;Szebényi, G.; Sukumaran, J.;DeBaets, P. TribologicalCharacterization of Nanoparticle Filled PTFE: Wear-Induced Crystallinity Increase and Filler Accumulation. Express Polym. Lett. 2021,15, 972-986. http://dx.doi.org/10.3144/expresspolymlett.2021.78
dc.relation.references[20] Huang, M.Z.;Nomai, J.;Schlarb, A.K. The Effect of Different Processing, Injection Molding (IM) and Fused Deposition Modeling (FDM), on the Environmental Stress Cracking (ESC) Behavior of Filled and Unfilled Polycarbonate (PC).Express Polym. Lett. 2021, 15, 194-202. https://doi.org/10.3144/expresspolymlett.2021.18
dc.relation.references[21] Begović, N.N.;Blagojević, V.A.;Ostojić, S.B.;Radulović, A.M.;Poleti, D.;Minić, D.M. Thermally Activated 3D to 2D Structural Transformation of [Ni2(en)2(H2O)6(pyr)]•4H2O Flexible Coordination Polymer.Mater. Chem. Phys. 2015, 149-150, 105-112. https://doi.org/10.1016/j.matchemphys.2014.09.052
dc.relation.references[22] Vempati, S.; Natarajan, T.S. Flexible Polymer Microtubesand Microchannelsvia Electrospinning.Mater. Lett.2011,65, 3493-3495. http://dx.doi.org/10.1016/j.matlet.2011.07.047
dc.relation.references[23] Laskarakis, A.; Georgiou, D.;Logothetidis, S.;Amberg-Scwhab, S.; Weber, U. Study of the Optical Response of Hybrid Polymers with Embedded Inorganic Nanoparticles for Encapsulation of Flexible Organic Electronics.Mater. Chem. Phys. 2009, 115, 269-274. https://doi.org/10.1016/j.matchemphys.2008.11.058
dc.relation.references[24] Sinha, K.;Meng, L.; Xu, Q.; Wang, X. Laser Induction of Graphene onto Lignin-Upgraded Flexible Polymer Matrix.Mater. Lett.2021, 286, 129268. https://doi.org/10.1016/j.matlet.2020.129268
dc.relation.references[25] Jiang, D.; Al Shraida, H.A.; Ning, F. Non-Planar Polymer-Based Flexible Electronics Fabricated by a Four-Axis Additive Manufacturing Process.Mater. Lett.2021, 294, 129748. https://doi.org/10.1016/j.matlet.2021.129748
dc.relation.references[26] Gomez-Solis, C.;Mtz-Enriquez, A.I.; Oliva, A.; Rosillo-de la Torre, A.; Oliva, J. Bioactivity of Flexible Graphene Composites Coated with a CaSiO3/Acrylic Polymer Membrane. Mater. Chem. Phys.2020,241, 122358. http://dx.doi.org/10.1016/j.matchemphys.2019.122358
dc.relation.references[27] Linse, P.;Källrot, N. Polymer Adsorption from Bulk Solution onto Planar Surfaces: Effect of Polymer Flexibility and Surface Attraction in Good Solvent. Macromolecules 2010, 43, 2054–2068. https://doi.org/10.1021/ma902338m
dc.relation.references[28] Manterola, J.;Zurbitu, J.;Renart, J.;Turon, A.;Urresti, I. Durability Study of Flexible Bonded Joints: The Effect of Sustained Loads in Mode I Fracture Tests.Polym. Test.2020, 88, 106570. https://doi.org/10.1016/j.polymertesting.2020.106570
dc.relation.references[29] Hsu, J.-S.; Juan, W.-P. Optical Polarization Measurement for Measuring Deflection Radius of the Optically Anisotropic Flexible-Polymeric Substrate.Polym. Test. 2020, 84, 106376.
dc.relation.references[30] Fan, J.T.;Weerheijm, J.;Sluys, L.J. Deformation to Fracture Evolution of a Flexible Polymer under Split Hopkinson Pressure Bar Loading.Polym. Test. 2018, 70, 192-196.
dc.relation.references[31] Molnár, K.;Virág, A.D.;Hálasz, M. Shear and Yarn Pull-Out Grip for Testing Flexible Sheets by Universal Load Machines.Polym. Test. 2020, 82, 106345.
dc.relation.references[32] Rivetti, C.; Walker C.; Bustamante C. Polymer Chain Statistics and Conformational Analysis of DNA Molecules with Bends or Sections of Different Flexibility.J.Molec. Biol.1988, 280, 41-59.
dc.relation.references[33] Wunderlich, B.;Grebowicz, J.ThermotropicMesophasesand Mesophase Transitions of Linear, Flexible Macromolecules.InLiquid Crystal Polymers II/III, Advances in Polymer Science, vol. 60/61;Platé, N.A., Ed.; Springer: Berlin – Heidelberg, 1984.
dc.relation.references[34] Khokhlov, A.R.; Semenov, A.N. On the theory of liquid-crystalline ordering of polymer chains with limited flexibility.J. Statist. Phys.1985, 38, 161–182.
dc.relation.references[35] Dubov, O.;Marcé, J.G.;Fortuny, A.;Fabregat, A.; Stüber, F.; Font, J. Flexible Semi-Amorphous Carbon Nitride Films with Outstanding Electrochemical Stability Derived from Soluble Polymeric Precursors. J. Mater.Sci.2022, 57, 4970–4989. https://doi.org/10.1007/s10853-022-06906-5
dc.relation.references[36] Balart, R.;Montanes, N.;Dominici, F.;Boronat, T.; Torres-Giner, S. Environmentally Friendly Polymers and Polymer Composites.Materials 2020, 13, 4892. https://doi.org/10.3390/ma13214892
dc.relation.referencesen[1] Hambleton, R.; Naylor, D. Innovative on-Line Learning of Ferrous Metallurgy.J. Mater. Ed. 2007, 29, 67-78.
dc.relation.referencesen[2] Meseguer-Valdenebro, J.L.; Miguel, V.;Caravaca, M.;Portolés, A.;Gimeno, F. Teaching Mechanical Properties of Different Steels for Engineering Students.J. Mater. Ed. 2015, 37, 103-118.
dc.relation.referencesen[3] Wadood, A.;Ozair, H.;Muhyuddin, M. Titanium Based Shape Memory Alloys from Materials Education Point of View.J. Mater. Ed. 2019, 41,137-148.
dc.relation.referencesen[4] Brostow, W.;HaggLobland, H.E.;Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers.J. Mater. Res. 2006, 21, 2422.
dc.relation.referencesen[5] Lucas, E.F.;Soares, B.G.; Monteiro, E. Caracterização de polimeros; e-papers ServiçosEditoriaisLtda: Rio de Janeiro, 2001.
dc.relation.referencesen[6] Gedde, U.W.; Hedenqvist, M.S. Fundamental Polymer Science, 2ndEdition; Springer Nature Switzerland AG, 2019.
dc.relation.referencesen[7] Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis, 3rdEdition; CRC Press Boca Raton FL, 2020.
dc.relation.referencesen[8] Lu, S.; Lin, J.; Liu, K.; Yue, S.; Ren, K.; Tan, F.; Whang, Z.; Jin, P.; Qu, S.; Whang, Z. Large Area Flexible Polymer Solar Cells with High Efficiency Enabled by Imprinted Ag Grid and Modified Buffer Layer.Acta Mater. 2017, 130, 208-214. https://doi.org/10.1016/j.actamat.2017.03.050
dc.relation.referencesen[9] Cordill, M.J.; Fischer, F.D.;Rammerstorfer, F.G.;Dehm, G. Adhesion Energies of Cr Thin Films on Polyimide Determined from Buckling: Experiment and Model.Acta Mater. 2010, 58, 5520-5531. https://doi.org/10.1016/j.actamat.2010.06.032
dc.relation.referencesen[10] Katerelos, D.G.; McCartney, L.N.;Galiotis, C. Local Strain re-Distribution and Stiffness Degradation in Cross-Ply Polymer Composites under Tension.Acta Mater. 2005, 53, 3335-3343. https://doi.org/10.1016/j.actamat.2005.03.045
dc.relation.referencesen[11] Brostow, W.;HaggLobland, H.E.; Hong, H.J.; Lohse, S.;Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction.J. Mater. Sci. Res. 2019, 8, 31-35. https://doi.org/10.5539/jmsr.v8n3p31
dc.relation.referencesen[12] Pauling, L. The Chemical Bond and the Structure of Molecules and Crystals, 3rdEdition; Cornell University Press: Ithaca, NY, 1960.
dc.relation.referencesen[13] Brostow, W.;Fałtynowicz, H.;Gencel, O.;Grigoriev, A.;HaggLobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites.Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514
dc.relation.referencesen[14] Brostow, W.;HaggLobland, H.E. Brittleness of Materials: Implications for Composites and Relation to Impact Strength.J. Mater. Sci. 2010, 45, 242-250. https://doi.org/10.1007/s10853-009-3926-5
dc.relation.referencesen[15] Brostow, W.; Osmanson, A.T. From Mechanics to Thermodynamics: A Relation between the Brittleness and the Thermal Expansivity for Polymers.Materials Letters: X 2019, 1, 100005. https://doi.org/10.1016/j.mlblux.2019.100005
dc.relation.referencesen[16] Brostow, W.; HaggLobland, H.E. Survey of Relations of Chemical Constituents in Polymer-Based Materials with Brittleness and its Associated Properties. Chem. Chem. Technol. 2016, 10, 595-600. https://doi.org/10.23939/chcht10.04si.595
dc.relation.referencesen[17] Kelvin, William Thomson. Motions of Viscous Liquid.Mathematical and physical papers1890, 436-465.
dc.relation.referencesen[18] Brostow, W.; HaggLobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017.
dc.relation.referencesen[19] Tóth, L.F.;Szebényi, G.; Sukumaran, J.;DeBaets, P. TribologicalCharacterization of Nanoparticle Filled PTFE: Wear-Induced Crystallinity Increase and Filler Accumulation. Express Polym. Lett. 2021,15, 972-986. http://dx.doi.org/10.3144/expresspolymlett.2021.78
dc.relation.referencesen[20] Huang, M.Z.;Nomai, J.;Schlarb, A.K. The Effect of Different Processing, Injection Molding (IM) and Fused Deposition Modeling (FDM), on the Environmental Stress Cracking (ESC) Behavior of Filled and Unfilled Polycarbonate (PC).Express Polym. Lett. 2021, 15, 194-202. https://doi.org/10.3144/expresspolymlett.2021.18
dc.relation.referencesen[21] Begović, N.N.;Blagojević, V.A.;Ostojić, S.B.;Radulović, A.M.;Poleti, D.;Minić, D.M. Thermally Activated 3D to 2D Structural Transformation of [Ni2(en)2(H2O)6(pyr)]•4H2O Flexible Coordination Polymer.Mater. Chem. Phys. 2015, 149-150, 105-112. https://doi.org/10.1016/j.matchemphys.2014.09.052
dc.relation.referencesen[22] Vempati, S.; Natarajan, T.S. Flexible Polymer Microtubesand Microchannelsvia Electrospinning.Mater. Lett.2011,65, 3493-3495. http://dx.doi.org/10.1016/j.matlet.2011.07.047
dc.relation.referencesen[23] Laskarakis, A.; Georgiou, D.;Logothetidis, S.;Amberg-Scwhab, S.; Weber, U. Study of the Optical Response of Hybrid Polymers with Embedded Inorganic Nanoparticles for Encapsulation of Flexible Organic Electronics.Mater. Chem. Phys. 2009, 115, 269-274. https://doi.org/10.1016/j.matchemphys.2008.11.058
dc.relation.referencesen[24] Sinha, K.;Meng, L.; Xu, Q.; Wang, X. Laser Induction of Graphene onto Lignin-Upgraded Flexible Polymer Matrix.Mater. Lett.2021, 286, 129268. https://doi.org/10.1016/j.matlet.2020.129268
dc.relation.referencesen[25] Jiang, D.; Al Shraida, H.A.; Ning, F. Non-Planar Polymer-Based Flexible Electronics Fabricated by a Four-Axis Additive Manufacturing Process.Mater. Lett.2021, 294, 129748. https://doi.org/10.1016/j.matlet.2021.129748
dc.relation.referencesen[26] Gomez-Solis, C.;Mtz-Enriquez, A.I.; Oliva, A.; Rosillo-de la Torre, A.; Oliva, J. Bioactivity of Flexible Graphene Composites Coated with a CaSiO3/Acrylic Polymer Membrane. Mater. Chem. Phys.2020,241, 122358. http://dx.doi.org/10.1016/j.matchemphys.2019.122358
dc.relation.referencesen[27] Linse, P.;Källrot, N. Polymer Adsorption from Bulk Solution onto Planar Surfaces: Effect of Polymer Flexibility and Surface Attraction in Good Solvent. Macromolecules 2010, 43, 2054–2068. https://doi.org/10.1021/ma902338m
dc.relation.referencesen[28] Manterola, J.;Zurbitu, J.;Renart, J.;Turon, A.;Urresti, I. Durability Study of Flexible Bonded Joints: The Effect of Sustained Loads in Mode I Fracture Tests.Polym. Test.2020, 88, 106570. https://doi.org/10.1016/j.polymertesting.2020.106570
dc.relation.referencesen[29] Hsu, J.-S.; Juan, W.-P. Optical Polarization Measurement for Measuring Deflection Radius of the Optically Anisotropic Flexible-Polymeric Substrate.Polym. Test. 2020, 84, 106376.
dc.relation.referencesen[30] Fan, J.T.;Weerheijm, J.;Sluys, L.J. Deformation to Fracture Evolution of a Flexible Polymer under Split Hopkinson Pressure Bar Loading.Polym. Test. 2018, 70, 192-196.
dc.relation.referencesen[31] Molnár, K.;Virág, A.D.;Hálasz, M. Shear and Yarn Pull-Out Grip for Testing Flexible Sheets by Universal Load Machines.Polym. Test. 2020, 82, 106345.
dc.relation.referencesen[32] Rivetti, C.; Walker C.; Bustamante C. Polymer Chain Statistics and Conformational Analysis of DNA Molecules with Bends or Sections of Different Flexibility.J.Molec. Biol.1988, 280, 41-59.
dc.relation.referencesen[33] Wunderlich, B.;Grebowicz, J.ThermotropicMesophasesand Mesophase Transitions of Linear, Flexible Macromolecules.InLiquid Crystal Polymers II/III, Advances in Polymer Science, vol. 60/61;Platé, N.A., Ed.; Springer: Berlin – Heidelberg, 1984.
dc.relation.referencesen[34] Khokhlov, A.R.; Semenov, A.N. On the theory of liquid-crystalline ordering of polymer chains with limited flexibility.J. Statist. Phys.1985, 38, 161–182.
dc.relation.referencesen[35] Dubov, O.;Marcé, J.G.;Fortuny, A.;Fabregat, A.; Stüber, F.; Font, J. Flexible Semi-Amorphous Carbon Nitride Films with Outstanding Electrochemical Stability Derived from Soluble Polymeric Precursors. J. Mater.Sci.2022, 57, 4970–4989. https://doi.org/10.1007/s10853-022-06906-5
dc.relation.referencesen[36] Balart, R.;Montanes, N.;Dominici, F.;Boronat, T.; Torres-Giner, S. Environmentally Friendly Polymers and Polymer Composites.Materials 2020, 13, 4892. https://doi.org/10.3390/ma13214892
dc.relation.urihttps://doi.org/10.1016/j.actamat.2017.03.050
dc.relation.urihttps://doi.org/10.1016/j.actamat.2010.06.032
dc.relation.urihttps://doi.org/10.1016/j.actamat.2005.03.045
dc.relation.urihttps://doi.org/10.5539/jmsr.v8n3p31
dc.relation.urihttps://doi.org/10.23939/chcht14.04.514
dc.relation.urihttps://doi.org/10.1007/s10853-009-3926-5
dc.relation.urihttps://doi.org/10.1016/j.mlblux.2019.100005
dc.relation.urihttps://doi.org/10.23939/chcht10.04si.595
dc.relation.urihttp://dx.doi.org/10.3144/expresspolymlett.2021.78
dc.relation.urihttps://doi.org/10.3144/expresspolymlett.2021.18
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2014.09.052
dc.relation.urihttp://dx.doi.org/10.1016/j.matlet.2011.07.047
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2008.11.058
dc.relation.urihttps://doi.org/10.1016/j.matlet.2020.129268
dc.relation.urihttps://doi.org/10.1016/j.matlet.2021.129748
dc.relation.urihttp://dx.doi.org/10.1016/j.matchemphys.2019.122358
dc.relation.urihttps://doi.org/10.1021/ma902338m
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2020.106570
dc.relation.urihttps://doi.org/10.1007/s10853-022-06906-5
dc.relation.urihttps://doi.org/10.3390/ma13214892
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Brostow W., Hagg Lobland H. E., Hamad N. A., 2023
dc.subjectгнучкість полімеру
dc.subjectізобарна термічна розширюваність
dc.subjectневідповідність розширюваності
dc.subjectpolymer flexibility
dc.subjectisobaric thermal expansivity
dc.subjectexpansivity mismatch
dc.titleDependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility
dc.title.alternativeЗалежність лінійної ізобарної термічної розширюваності полімерів від їхньої гнучкості
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Brostow_W-Dependence_of_Linear_Isobaric_796-799.pdf
Size:
287.64 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Brostow_W-Dependence_of_Linear_Isobaric_796-799__COVER.png
Size:
515.01 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: