Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives

dc.citation.epage117
dc.citation.issue1
dc.citation.spage110
dc.contributor.affiliationLviv Ukrainian National Forestry University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKshyvetskyy, Bogdan
dc.contributor.authorKindzera, Diana
dc.contributor.authorSokolovskyy, Yaroslav
dc.contributor.authorSomar, Halyna
dc.contributor.authorSokolovskyi, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:30Z
dc.date.available2024-02-09T10:29:30Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСеред кількох видів термопластичних клеїв, структуровані й неструктуровані полівінілацетатні (ПВА) клеї достатньо широко використовують, зокрема для формування клейових з’єднань різних порід деревини, серед них дуба. Для забезпечення належних умов використання клейових з’єднань деревини дуба важлива наявність швидких і точних методів прогнозування їхньої міцності і довговічності. Зміни міцності клейових з’єднань деревини дуба, з’єднаних структурованими і неструктурованими ПВА клеями, вивчено за допомогою тривалих експериментальних досліджень. На основі узагальнення експериментальних даних і теоретичних прогнозів механізму утворення клейового шва запропоновано залежності, які дають змогу теоретично розрахувати міцність клейових з’єднань деревини дуба, з’єднаних неструктурованими і структурованими ПВА клеями. Запропоновані рівняння відтворюють експериментальні дані з достатньою точністю ± 3,5 % в діапазоні температур від 251 K до 306 K і вологості від 40 % до 100 %, тому рекомендовані для практичного використання.
dc.description.abstractAmong the several kinds of thermoplastic adhesives, structured and non-structured polyvinyl acetate (PVA) adhesives have a rather wide application and are used currently for forming adhesive joints from different wood species, especially oakwood. To ensure proper conditions of oakwood adhesive joints use, it is important to have fast and accurate methods of predicting their strength and durability. The strength changes of the oakwood adhesive joints bonded with structured and non-structured PVA adhesives have been investigated by conducting long-term experiments. Based on the generalization of experimental data and theoretical predictions regarding the mechanism of the adhesive seam formation, equations that allow calculating theoretically the strength of oakwood adhesive joints bonded with non-structured and structured PVA adhesives have been proposed. The pro-posed equations reproduce experimental data with suffi-cient accuracy of ±3.5 % within the temperature range from 251 K to 306 K and humidity range from 40 % to 100 %, and therefore, are recommended for practical use.
dc.format.extent110-117
dc.format.pages8
dc.identifier.citationPrediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives / Bogdan Kshyvetskyy, Diana Kindzera, Yaroslav Sokolovskyy, Halyna Somar, Ihor Sokolovskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 110–117.
dc.identifier.citationenPrediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives / Bogdan Kshyvetskyy, Diana Kindzera, Yaroslav Sokolovskyy, Halyna Somar, Ihor Sokolovskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 110–117.
dc.identifier.doidoi.org/10.23939/chcht17.01.110
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61210
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
dc.relation.references[2] Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
dc.relation.references[3] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203
dc.relation.references[4] Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde–Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617
dc.relation.references[5] Bekhta, P.; Müller, M.; Hunko, І. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
dc.relation.references[6] Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007
dc.relation.references[7] Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f
dc.relation.references[8] Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599
dc.relation.references[9] Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220.
dc.relation.references[10] Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc–NMA–MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644
dc.relation.references[11] Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323
dc.relation.references[12] Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899
dc.relation.references[13] Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002
dc.relation.references[14] Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043
dc.relation.references[15] Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838
dc.relation.references[16] Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459
dc.relation.references[17] Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266
dc.relation.referencesen[1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
dc.relation.referencesen[2] Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
dc.relation.referencesen[3] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203
dc.relation.referencesen[4] Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde–Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617
dc.relation.referencesen[5] Bekhta, P.; Müller, M.; Hunko, I. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
dc.relation.referencesen[6] Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007
dc.relation.referencesen[7] Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f
dc.relation.referencesen[8] Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599
dc.relation.referencesen[9] Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220.
dc.relation.referencesen[10] Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc–NMA–MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644
dc.relation.referencesen[11] Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323
dc.relation.referencesen[12] Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899
dc.relation.referencesen[13] Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002
dc.relation.referencesen[14] Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043
dc.relation.referencesen[15] Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838
dc.relation.referencesen[16] Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459
dc.relation.referencesen[17] Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266
dc.relation.urihttps://doi.org/10.3390/polym12051115
dc.relation.urihttps://doi.org/10.1016/j.biortech.2009.09.085
dc.relation.urihttps://doi.org/10.1177/096739111602400203
dc.relation.urihttps://doi.org/10.5114/bta.2017.66617
dc.relation.urihttps://doi.org/10.3390/polym12112582
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2011.06.007
dc.relation.urihttps://doi.org/10.1021/am302864f
dc.relation.urihttps://doi.org/10.1108/03699420110381599
dc.relation.urihttps://doi.org/10.1177/0892705712461644
dc.relation.urihttps://doi.org/10.23939/chcht08.03.323
dc.relation.urihttps://doi.org/10.1080/15440478.2021.1902899
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2008.03.002
dc.relation.urihttps://doi.org/10.1080/17480270701841043
dc.relation.urihttps://doi.org/10.15376/biores.10.3.3831-3838
dc.relation.urihttps://doi.org/10.23939/chcht10.04.459
dc.relation.urihttp://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kshyvetskyy B., Kindzera D., Sokolovskyy Ya., Somar H., Sokolovskyi I., 2023
dc.subjectполівінілацетатні клеї
dc.subjectклейове з’єднання деревини
dc.subjectміцність
dc.subjectдовговічність
dc.subjectклейовий шов
dc.subjectpolyvinyl acetate adhesives
dc.subjectadhesive wooden joint
dc.subjectstrength
dc.subjectdurability
dc.subjectadhesive seam
dc.titlePrediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives
dc.title.alternativeПрогнозування міцності клейових з’єднань деревини дуба, з’єднаних термопластичними полівінілацетатними клеями
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Kshyvetskyy_B-Prediction_of_the_Strength_110-117.pdf
Size:
628.4 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Kshyvetskyy_B-Prediction_of_the_Strength_110-117__COVER.png
Size:
568.53 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: