Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives
dc.citation.epage | 117 | |
dc.citation.issue | 1 | |
dc.citation.spage | 110 | |
dc.contributor.affiliation | Lviv Ukrainian National Forestry University | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Kshyvetskyy, Bogdan | |
dc.contributor.author | Kindzera, Diana | |
dc.contributor.author | Sokolovskyy, Yaroslav | |
dc.contributor.author | Somar, Halyna | |
dc.contributor.author | Sokolovskyi, Ihor | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:30Z | |
dc.date.available | 2024-02-09T10:29:30Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Серед кількох видів термопластичних клеїв, структуровані й неструктуровані полівінілацетатні (ПВА) клеї достатньо широко використовують, зокрема для формування клейових з’єднань різних порід деревини, серед них дуба. Для забезпечення належних умов використання клейових з’єднань деревини дуба важлива наявність швидких і точних методів прогнозування їхньої міцності і довговічності. Зміни міцності клейових з’єднань деревини дуба, з’єднаних структурованими і неструктурованими ПВА клеями, вивчено за допомогою тривалих експериментальних досліджень. На основі узагальнення експериментальних даних і теоретичних прогнозів механізму утворення клейового шва запропоновано залежності, які дають змогу теоретично розрахувати міцність клейових з’єднань деревини дуба, з’єднаних неструктурованими і структурованими ПВА клеями. Запропоновані рівняння відтворюють експериментальні дані з достатньою точністю ± 3,5 % в діапазоні температур від 251 K до 306 K і вологості від 40 % до 100 %, тому рекомендовані для практичного використання. | |
dc.description.abstract | Among the several kinds of thermoplastic adhesives, structured and non-structured polyvinyl acetate (PVA) adhesives have a rather wide application and are used currently for forming adhesive joints from different wood species, especially oakwood. To ensure proper conditions of oakwood adhesive joints use, it is important to have fast and accurate methods of predicting their strength and durability. The strength changes of the oakwood adhesive joints bonded with structured and non-structured PVA adhesives have been investigated by conducting long-term experiments. Based on the generalization of experimental data and theoretical predictions regarding the mechanism of the adhesive seam formation, equations that allow calculating theoretically the strength of oakwood adhesive joints bonded with non-structured and structured PVA adhesives have been proposed. The pro-posed equations reproduce experimental data with suffi-cient accuracy of ±3.5 % within the temperature range from 251 K to 306 K and humidity range from 40 % to 100 %, and therefore, are recommended for practical use. | |
dc.format.extent | 110-117 | |
dc.format.pages | 8 | |
dc.identifier.citation | Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives / Bogdan Kshyvetskyy, Diana Kindzera, Yaroslav Sokolovskyy, Halyna Somar, Ihor Sokolovskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 110–117. | |
dc.identifier.citationen | Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives / Bogdan Kshyvetskyy, Diana Kindzera, Yaroslav Sokolovskyy, Halyna Somar, Ihor Sokolovskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 110–117. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.110 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61210 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115 | |
dc.relation.references | [2] Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085 | |
dc.relation.references | [3] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203 | |
dc.relation.references | [4] Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde–Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617 | |
dc.relation.references | [5] Bekhta, P.; Müller, M.; Hunko, І. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582 | |
dc.relation.references | [6] Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007 | |
dc.relation.references | [7] Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f | |
dc.relation.references | [8] Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599 | |
dc.relation.references | [9] Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220. | |
dc.relation.references | [10] Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc–NMA–MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644 | |
dc.relation.references | [11] Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323 | |
dc.relation.references | [12] Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899 | |
dc.relation.references | [13] Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002 | |
dc.relation.references | [14] Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043 | |
dc.relation.references | [15] Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838 | |
dc.relation.references | [16] Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459 | |
dc.relation.references | [17] Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266 | |
dc.relation.referencesen | [1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115 | |
dc.relation.referencesen | [2] Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085 | |
dc.relation.referencesen | [3] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203 | |
dc.relation.referencesen | [4] Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A. Adhesives Based on Formaldehyde–Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617 | |
dc.relation.referencesen | [5] Bekhta, P.; Müller, M.; Hunko, I. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582 | |
dc.relation.referencesen | [6] Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007 | |
dc.relation.referencesen | [7] Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f | |
dc.relation.referencesen | [8] Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599 | |
dc.relation.referencesen | [9] Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220. | |
dc.relation.referencesen | [10] Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc–NMA–MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644 | |
dc.relation.referencesen | [11] Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323 | |
dc.relation.referencesen | [12] Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899 | |
dc.relation.referencesen | [13] Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002 | |
dc.relation.referencesen | [14] Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U. Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043 | |
dc.relation.referencesen | [15] Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P. Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838 | |
dc.relation.referencesen | [16] Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459 | |
dc.relation.referencesen | [17] Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266 | |
dc.relation.uri | https://doi.org/10.3390/polym12051115 | |
dc.relation.uri | https://doi.org/10.1016/j.biortech.2009.09.085 | |
dc.relation.uri | https://doi.org/10.1177/096739111602400203 | |
dc.relation.uri | https://doi.org/10.5114/bta.2017.66617 | |
dc.relation.uri | https://doi.org/10.3390/polym12112582 | |
dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2011.06.007 | |
dc.relation.uri | https://doi.org/10.1021/am302864f | |
dc.relation.uri | https://doi.org/10.1108/03699420110381599 | |
dc.relation.uri | https://doi.org/10.1177/0892705712461644 | |
dc.relation.uri | https://doi.org/10.23939/chcht08.03.323 | |
dc.relation.uri | https://doi.org/10.1080/15440478.2021.1902899 | |
dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2008.03.002 | |
dc.relation.uri | https://doi.org/10.1080/17480270701841043 | |
dc.relation.uri | https://doi.org/10.15376/biores.10.3.3831-3838 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.04.459 | |
dc.relation.uri | http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kshyvetskyy B., Kindzera D., Sokolovskyy Ya., Somar H., Sokolovskyi I., 2023 | |
dc.subject | полівінілацетатні клеї | |
dc.subject | клейове з’єднання деревини | |
dc.subject | міцність | |
dc.subject | довговічність | |
dc.subject | клейовий шов | |
dc.subject | polyvinyl acetate adhesives | |
dc.subject | adhesive wooden joint | |
dc.subject | strength | |
dc.subject | durability | |
dc.subject | adhesive seam | |
dc.title | Prediction of the Strength of Oakwood Adhesive Joints Bonded with Thermoplastic Polyvinyl Acetate Adhesives | |
dc.title.alternative | Прогнозування міцності клейових з’єднань деревини дуба, з’єднаних термопластичними полівінілацетатними клеями | |
dc.type | Article |
Files
License bundle
1 - 1 of 1