Towards adaptation of the NURBS weights in shape optimization

dc.citation.epage967
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage959
dc.contributor.affiliationУніверситет Мухаммеда V у Рабаті
dc.contributor.affiliationMohammed V University in Rabat
dc.contributor.authorЗіані, М.
dc.contributor.authorZiani, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-24T09:14:09Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractПараметризація на основі Без’є в оптимізації форми має недолік використання поліномів високого степеня для рисування більш складних форм. Щоб подолати цей недолік, зазвичай використовуються неоднорідні раціональні B-сплайни (NURBS). Але, розглядаючи NURBS–ваги, крім розташування контрольних точок, як оптимізаційних змінних, вимірність задачі значно збільшується, і це робить процес оптимізації більш жорстким. У цій роботі пропонуємо алгоритм для адаптації вагових коефіцієнтів NURBS у параметризації задач оптимізації форми. На відміну від координат контрольних точок, ваги в цьому випадку не розглядаються як змінні процесу оптимізації. Знаючи наближену оптимальну форму, розглядаємо множину всіх NURBS–параметризацій однакового степеня, які апроксимують форму в сенсі найменших квадратів. Після того обираємо параметризацію, пов’язану з найбільш правильним контрольним многокутником (з найменшою довжиною контрольного многокутника).
dc.description.abstractBézier based parametrisations in shape optimization have the drawback of using high degree polynomials to draw more complex shapes. To overcome this drawback, Non-Uniform Rational B-Splines (NURBS) are usually used. But, by considering the NURBS weights, in addition to the locations of the control points, as optimization variables, the dimension of the problem greatly increases and this would make the optimization process stiffer. In this work we propose, then, an algorithm to adapt the weights of NURBS in the parametrization of shape optimization problems. Unlike the coordinates of the control points, the weights are not considered, in this case, as variables of the optimization process. From the knowledge of an approximate optimal shape, we consider the set of all NURBS parametrizations of the same degree that approximate the shape in the sense of least squares. Then, we elect the parametrization associated with the most regular control polygon (least length of the control polygon). Numerical results show that the adaptive parametrization improves the performance of the optimization process.
dc.format.extent959-967
dc.format.pages9
dc.identifier.citationZiani M. Towards adaptation of the NURBS weights in shape optimization / M. Ziani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 959–967.
dc.identifier.citationenZiani M. Towards adaptation of the NURBS weights in shape optimization / M. Ziani // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 4. — P. 959–967.
dc.identifier.doidoi.org/10.23939/mmc2022.04.959
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64233
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 4 (9), 2022
dc.relation.references[1] Rogers D. F. An introduction to NURBS: with historical perspective. Morgan Kaufman Publishers, San Fransisco (2001).
dc.relation.references[2] Piegl L., Tiller W. The NURBS book. Springer, New York (1997).
dc.relation.references[3] Yashchuk Yu. O., Tajs-Zielinska K. Solving topology optimization problems using cellular automata and mortar finite element method. Mathematical Modeling and Computing. 7 (2), 239–247 (2020).
dc.relation.references[4] Hassouna S., Timesli A. Optimal variable support size for mesh-free approaches using genetic algorithm. Mathematical Modeling and Computing. 8 (4), 678–690 (2021).
dc.relation.references[5] Saffah Z., Hassouna S., Timesli A., Azouani A., Lahmam H. RBF collocation path-following approach: optimal choice for shape parameter based on genetic algorithm. Mathematical Modeling and Computing. 8 (4), 770–782 (2021).
dc.relation.references[6] B´elahc`ene F., D´esid´eri J.-A. Param´etrisation de B´ezier adaptative pour l’optimisation de forme en a´erodynamique. Technical Report 4943, INRIA, September 2003.
dc.relation.references[7] Hollig K., Horner J. Approximation and modeling with B-splines. SIAM (2013).
dc.relation.references[8] Fußeder D., Simeon B., Vuong A.-V. Fundamental aspects of shape optimization in the context of isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 286, 313–331 (2015).
dc.relation.references[9] Wang Y., Wang Z., Xia Z., Hien P. L. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling in Engineering and Sciences. 117 (3), 455–507 (2018).
dc.relation.references[10] Polishchuk O. Finite element approximations in projection methods for solution of some fredholm integral equation of the first kind. Mathematical Modeling and Computing. 5 (1), 74–87 (2018).
dc.relation.references[11] Wall W. A., Frenzel M. A., Cyron C. Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering. 197 (33–40), 2976–2988 (2008).
dc.relation.references[12] Qin X. C., Dong C. Y. NURBS-based isogeomtric shape and material optimization of curvilinearly stiffened plates with FGMs. Thin-Walled Structures. 162, 107601 (2021).
dc.relation.references[13] Song Y.-U., Hur J. Y., Youn S.-K. Study of the shape optimization in spline FEM considering both nurbs control point positions and weights as design variables. Transactions of the Korean Society of Mechanical Engineers A. The Korean Society of Mechanical Engineers. 38 (4), 363–370 (2014).
dc.relation.references[14] Taheri A. H., Abolghasemi S., Suresh K. Generalizations of Non-Uniform Rational B-Splines via decoupling of the weights: theory, software and applications. Engineering with Computers. 36, 1831–1848 (2020).
dc.relation.references[15] Clarich A., D´esid´eri J.-A. Self-adaptive parameterization for aerodynamic optimum-shape design. Technical Report 4428, INRIA, March 2002.
dc.relation.references[16] Tang Z., D´esid´eri J.-A. Towards self-adaptive parameterization for B´ezier curves for airfoil aerodynamic design. Technical Report 4572, INRIA, September 2002.
dc.relation.references[17] Cox M. G. The numerical evaluation of B-splines. IMA Journal of Applied Mathematics. 10 (2), 134–149 (1972).
dc.relation.references[18] De Boor C. On calculating with B-splines. Journal of Approximation Theory. 6 (1), 50–62 (1972).
dc.relation.references[19] De Boor C. A pactical guide to splines. New York, Springer–Verlag (1978).
dc.relation.references[20] Ziani M., Duvigneau R. On the role played by NURBS weights in isogeometric structural shape optimization. In Proceedings of PICOF 10 (2009).
dc.relation.referencesen[1] Rogers D. F. An introduction to NURBS: with historical perspective. Morgan Kaufman Publishers, San Fransisco (2001).
dc.relation.referencesen[2] Piegl L., Tiller W. The NURBS book. Springer, New York (1997).
dc.relation.referencesen[3] Yashchuk Yu. O., Tajs-Zielinska K. Solving topology optimization problems using cellular automata and mortar finite element method. Mathematical Modeling and Computing. 7 (2), 239–247 (2020).
dc.relation.referencesen[4] Hassouna S., Timesli A. Optimal variable support size for mesh-free approaches using genetic algorithm. Mathematical Modeling and Computing. 8 (4), 678–690 (2021).
dc.relation.referencesen[5] Saffah Z., Hassouna S., Timesli A., Azouani A., Lahmam H. RBF collocation path-following approach: optimal choice for shape parameter based on genetic algorithm. Mathematical Modeling and Computing. 8 (4), 770–782 (2021).
dc.relation.referencesen[6] B´elahc`ene F., D´esid´eri J.-A. Param´etrisation de B´ezier adaptative pour l’optimisation de forme en a´erodynamique. Technical Report 4943, INRIA, September 2003.
dc.relation.referencesen[7] Hollig K., Horner J. Approximation and modeling with B-splines. SIAM (2013).
dc.relation.referencesen[8] Fußeder D., Simeon B., Vuong A.-V. Fundamental aspects of shape optimization in the context of isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 286, 313–331 (2015).
dc.relation.referencesen[9] Wang Y., Wang Z., Xia Z., Hien P. L. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling in Engineering and Sciences. 117 (3), 455–507 (2018).
dc.relation.referencesen[10] Polishchuk O. Finite element approximations in projection methods for solution of some fredholm integral equation of the first kind. Mathematical Modeling and Computing. 5 (1), 74–87 (2018).
dc.relation.referencesen[11] Wall W. A., Frenzel M. A., Cyron C. Isogeometric structural shape optimization. Computer Methods in Applied Mechanics and Engineering. 197 (33–40), 2976–2988 (2008).
dc.relation.referencesen[12] Qin X. C., Dong C. Y. NURBS-based isogeomtric shape and material optimization of curvilinearly stiffened plates with FGMs. Thin-Walled Structures. 162, 107601 (2021).
dc.relation.referencesen[13] Song Y.-U., Hur J. Y., Youn S.-K. Study of the shape optimization in spline FEM considering both nurbs control point positions and weights as design variables. Transactions of the Korean Society of Mechanical Engineers A. The Korean Society of Mechanical Engineers. 38 (4), 363–370 (2014).
dc.relation.referencesen[14] Taheri A. H., Abolghasemi S., Suresh K. Generalizations of Non-Uniform Rational B-Splines via decoupling of the weights: theory, software and applications. Engineering with Computers. 36, 1831–1848 (2020).
dc.relation.referencesen[15] Clarich A., D´esid´eri J.-A. Self-adaptive parameterization for aerodynamic optimum-shape design. Technical Report 4428, INRIA, March 2002.
dc.relation.referencesen[16] Tang Z., D´esid´eri J.-A. Towards self-adaptive parameterization for B´ezier curves for airfoil aerodynamic design. Technical Report 4572, INRIA, September 2002.
dc.relation.referencesen[17] Cox M. G. The numerical evaluation of B-splines. IMA Journal of Applied Mathematics. 10 (2), 134–149 (1972).
dc.relation.referencesen[18] De Boor C. On calculating with B-splines. Journal of Approximation Theory. 6 (1), 50–62 (1972).
dc.relation.referencesen[19] De Boor C. A pactical guide to splines. New York, Springer–Verlag (1978).
dc.relation.referencesen[20] Ziani M., Duvigneau R. On the role played by NURBS weights in isogeometric structural shape optimization. In Proceedings of PICOF 10 (2009).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectвагові коефіцієнти нерівномірних раціональних B-сплайнів
dc.subjectадаптація
dc.subjectконтрольний полігон
dc.subjectоптимізація форми
dc.subjectNon-Uniform Rational B-Splines (NURBS) weights
dc.subjectadaptation
dc.subjectcontrol polygon
dc.subjectshape optimization
dc.titleTowards adaptation of the NURBS weights in shape optimization
dc.title.alternativeДо адаптації вагових коефіцієнтів NURBS для оптимізації форми
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n4_Ziani_M-Towards_adaptation_of_the_959-967.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n4_Ziani_M-Towards_adaptation_of_the_959-967__COVER.png
Size:
438.67 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: