Закономірності насичення гідрогелевих плівок спиртовими розчинами

dc.citation.epage223
dc.citation.issue1
dc.citation.spage219
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСуберляк, С. А.
dc.contributor.authorПетріна, Р. О.
dc.contributor.authorПохмурська, А. В.
dc.contributor.authorБаран, Н. М.
dc.contributor.authorМельник, Ю. Я.
dc.contributor.authorSuberliak, S. A.
dc.contributor.authorPetrina, R. O.
dc.contributor.authorPohmurska, A. V.
dc.contributor.authorBaran, N. M.
dc.contributor.authorMelnyk, Yu. Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:52Z
dc.date.available2024-01-22T08:14:52Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractРозглянуто результати насичення спиртовими розчинами гідрогелевих плівок на основі кополімерів полівінілпіролідону з полі-2-гідроксіетилметакрилатом. Досліджено вплив концентрації етанолу, яка найчастіше використовується для виготовлення лікувальних екстрактів на основі лікарських трав. Визначено також вплив умов підготовки зразків на величину поглинання спирто-водної суміші.
dc.description.abstractThe results of saturation with alcohol solutions of hydrogel films based on copolymers of polyvinylpyrrolidone with poly-2-hydroxyethyl methacrylate have been considered in the paper. The impact of ethanol concentration which is the most often applied for the therapeutic extracts production based on medicinal herbs has been researched. The influence of samples preparation conditions on amount of alcoholwater mixture absorption was also determined.op
dc.format.extent219-223
dc.format.pages5
dc.identifier.citationЗакономірності насичення гідрогелевих плівок спиртовими розчинами / С. А. Суберляк, Р. О. Петріна, А. В. Похмурська, Н. М. Баран, Ю. Я. Мельник // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 219–223.
dc.identifier.citationenRegularities of hydrogel films saturation with alcoholic solutions / S. A. Suberliak, R. O. Petrina, A. V. Pohmurska, N. M. Baran, Yu. Ya. Melnyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 219–223.
dc.identifier.doidoi.org/10.23939/ctas2021.01.219
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60863
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Lu, H., Yuan, L., Yu, X. et al. (2018). Recent advances of on-demand dissolution of hydrogel dressings. Burns & Trauma, 6(35). https://doi.org/10.1186/s41038-018-0138-8
dc.relation.references2. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
dc.relation.references3. Hennink, W. E., Kim, S. W., Feijen, J. (1984). Inhibition of surface induced coagulation by preadsorption of albumin-heparin conjugates. J. Biomed. Mat. Res., 18(8), 911–926. https://doi.org/10.1002/jbm.820180806
dc.relation.references4. Suberlyak, O., Melnyk, J., Baran, N. (2007). High-hydrophilic membranes for dialysis and hemodialysis. Engineering Biomaterials, (63–64), 18–19.
dc.relation.references5. Skorokhoda, V., Melnyk, Yu., Semenyuk, N.et al. (2017). Film Hydrogels on the Basis of Polyvinilpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chemistry & Chemical Technology, 11(2), 171–174.
dc.relation.references6. Pogorielov, M. V., Kornienko, V. V., Tkachenko, Yu. A., Oleshko, O. M. (2013). Materials to the skin defects: chitosan derivatives and perspectives for their application (literature review). Journal of Clinical and Experimental Medical Research, 1(3), 275–284. https://essuir.sumdu.edu.ua/bitstream-download/123456789/33175/1/Pogorielov_skin%20defects.pdf
dc.relation.references7. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Enerhetyka teplo tekhnolohii ta enerhozberezhennia, 4. doi: 10.20998/2078-5364.2020.4.01
dc.relation.references8. Baron, R. I., Culica, M. E., Biliuta, G., Bercea, M. [and others] (2019). Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) for wound dressing applications. Materials, 12(9), 1569. doi: 10.3390/ma12091569.
dc.relation.references9. Baena, J.M., Galvez-Martin, P., Sabata, R. (2017). Development of scaffolds for regenerative medicine. Journal of Biotechnology & Biomaterials, 7(2), 56. DOI: 10.4172/2155-952X.C1.074
dc.relation.references10. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7–8), 3–10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10
dc.relation.references11. Suberlyak, O., Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. [in:] Haider S. and Haider A. (Eds.), Hydrogels. IntechOpen, London, 136–214. DOI: 10.5772/intechopen.72082
dc.relation.references12. Suberlyak, O. V., Mel’nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889–896. DOI: 10.1007/s11003-015-9798-8.
dc.relation.references13. Dzumedzei, Yu. I., Pobihai, H. A., Konovalova, V. V., Burban, A. F. (2010). Otrymannia biosumisnykh plivok na osnovi khitozanu ta doslidzhennia yikhnikh vlastyvostei. Naukovi zapysky, 105. Khimichni nauky i tekhnolohii, 51–56. http://ekmair.ukma.edu.ua/bitstream/handle/123456789/3814/Dzumedzei_Otrymannia.pdf?sequence=1&isAllowed=y
dc.relation.references14. Schmitt, Е., Holtz, М., Klinkmann, Н., Esther, G., Courtney, J. M. (1983). Heparin binding and release properties of DEAE cellulose membranes. Biomaterials, 4(4), 309–313. DOI: 10.1016/0142-9612(83)90034-0
dc.relation.referencesen1. Lu, H., Yuan, L., Yu, X. et al. (2018). Recent advances of on-demand dissolution of hydrogel dressings. Burns & Trauma, 6(35). https://doi.org/10.1186/s41038-018-0138-8
dc.relation.referencesen2. Larrañeta, E., Stewart, S., Ervine, M., Al-Kasasbeh, R., Donnelly, R. (2018). Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. Journal of Functional Biomaterials, 9(1), 13. https://doi.org/10.3390/jfb9010013
dc.relation.referencesen3. Hennink, W. E., Kim, S. W., Feijen, J. (1984). Inhibition of surface induced coagulation by preadsorption of albumin-heparin conjugates. J. Biomed. Mat. Res., 18(8), 911–926. https://doi.org/10.1002/jbm.820180806
dc.relation.referencesen4. Suberlyak, O., Melnyk, J., Baran, N. (2007). High-hydrophilic membranes for dialysis and hemodialysis. Engineering Biomaterials, (63–64), 18–19.
dc.relation.referencesen5. Skorokhoda, V., Melnyk, Yu., Semenyuk, N.et al. (2017). Film Hydrogels on the Basis of Polyvinilpyrrolidone Copolymers with Regulated Sorption-Desorption Characteristics. Chemistry & Chemical Technology, 11(2), 171–174.
dc.relation.referencesen6. Pogorielov, M. V., Kornienko, V. V., Tkachenko, Yu. A., Oleshko, O. M. (2013). Materials to the skin defects: chitosan derivatives and perspectives for their application (literature review). Journal of Clinical and Experimental Medical Research, 1(3), 275–284. https://essuir.sumdu.edu.ua/bitstream-download/123456789/33175/1/Pogorielov_skin%20defects.pdf
dc.relation.referencesen7. Lebediev, V. V., Tykhomyrova, T. S., Savchenko, D. O., Lozovytskyi, A. O., Lytvynenko, Ye. I. (2020). Vyvchennia osoblyvostei heleutvorennia ta reolohichnykh protsesiv hidrohelei na osnovi zhelatynu dlia kosmetolohii ta medytsyny. Enerhetyka teplo tekhnolohii ta enerhozberezhennia, 4. doi: 10.20998/2078-5364.2020.4.01
dc.relation.referencesen8. Baron, R. I., Culica, M. E., Biliuta, G., Bercea, M. [and others] (2019). Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) for wound dressing applications. Materials, 12(9), 1569. doi: 10.3390/ma12091569.
dc.relation.referencesen9. Baena, J.M., Galvez-Martin, P., Sabata, R. (2017). Development of scaffolds for regenerative medicine. Journal of Biotechnology & Biomaterials, 7(2), 56. DOI: 10.4172/2155-952X.P.1.074
dc.relation.referencesen10. Lavrov, N. A. (2018). Himicheskaya modifikatsiya i svoystva polimerov 2-gidroksietilmet-akrilata. Plast. massyi, (7–8), 3–10. https://doi.org/10.35164/0554-2901-2018-7-8-3-10
dc.relation.referencesen11. Suberlyak, O., Skorokhoda, V. (2018). Hydrogels based on polyvinylpyrrolidone copolymers. [in:] Haider S. and Haider A. (Eds.), Hydrogels. IntechOpen, London, 136–214. DOI: 10.5772/intechopen.72082
dc.relation.referencesen12. Suberlyak, O. V., Mel’nyk, Yu. Ya., Skorokhoda, V. I. (2015). Regularities of preparation and properties of hydrogel membranes. Materials Science, 50, 889–896. DOI: 10.1007/s11003-015-9798-8.
dc.relation.referencesen13. Dzumedzei, Yu. I., Pobihai, H. A., Konovalova, V. V., Burban, A. F. (2010). Otrymannia biosumisnykh plivok na osnovi khitozanu ta doslidzhennia yikhnikh vlastyvostei. Naukovi zapysky, 105. Khimichni nauky i tekhnolohii, 51–56. http://ekmair.ukma.edu.ua/bitstream/handle/123456789/3814/Dzumedzei_Otrymannia.pdf?sequence=1&isAllowed=y
dc.relation.referencesen14. Schmitt, E., Holtz, M., Klinkmann, N., Esther, G., Courtney, J. M. (1983). Heparin binding and release properties of DEAE cellulose membranes. Biomaterials, 4(4), 309–313. DOI: 10.1016/0142-9612(83)90034-0
dc.relation.urihttps://doi.org/10.1186/s41038-018-0138-8
dc.relation.urihttps://doi.org/10.3390/jfb9010013
dc.relation.urihttps://doi.org/10.1002/jbm.820180806
dc.relation.urihttps://essuir.sumdu.edu.ua/bitstream-download/123456789/33175/1/Pogorielov_skin%20defects.pdf
dc.relation.urihttps://doi.org/10.35164/0554-2901-2018-7-8-3-10
dc.relation.urihttp://ekmair.ukma.edu.ua/bitstream/handle/123456789/3814/Dzumedzei_Otrymannia.pdf?sequence=1&isAllowed=y
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectгідрогель
dc.subject2-гідроксіетилметакрилат
dc.subjectполівінілпіролідон
dc.subjectетанол
dc.subjectнасичення
dc.subjecthydrogel
dc.subject2-hydroxyethyl methacrylate
dc.subjectpolyvinylpyrrolidone
dc.subjectethanol
dc.subjectsaturation
dc.titleЗакономірності насичення гідрогелевих плівок спиртовими розчинами
dc.title.alternativeRegularities of hydrogel films saturation with alcoholic solutions
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Suberliak_S_A-Regularities_of_hydrogel_219-223.pdf
Size:
562.05 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Suberliak_S_A-Regularities_of_hydrogel_219-223__COVER.png
Size:
436.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: