Основи квантової термометрії

dc.contributor.affiliationНаціональний університет “Львівська політехніка”uk_UA
dc.contributor.authorСтадник, Богдан
dc.contributor.authorЯцишин, Святослав
dc.description.abstractДоведено існування кванта температури, зумовленого дисипацією одного електрона на фононах за одиницю часу, та теоретично визначено його значення через фундаментальні фізичні сталі з установленою непевністю, залежною від непевностей методів визначення цих сталих. Показано можливість створення сучасного еталона температури на базі фундаментальних фізичних сталих із залученням еталона електричного опору на базі інверсного значення кванта електропровідності та еталона напруги на базі масиву переходів Джозефсона. Доказано существование кванта температуры, обусловленного диссипацией одного электрона на фононах в единицу времени, теоретически определено его значение через фундаментальные физические постоянные с установленным значением неопределенности, зависящей от неопределенности методов определения этих постоянных. Показано возможность создания современного эталона температуры на базе фундаментальных физических постоянных с привлечением эталона электрического сопротивления на основании инверсного значения кванта электропроводности и эталона напряжения на основании массива переходов Джозефсона. At this moment the Temperature Unit remains the last, among 7 major units of SI, value that is not regulated at the atomic level. Such state of affairs cannot be deemed adequate for the advanced technology. After implementation of current CODATA “Temperature” redefinition, the next step in provision of scientific support for realizing the Temperature Measurement of new generation seems to be a creation of Quantum Standard on the basis of the fundamental physical constants. The Boltzmann constant consideration related only to the energy of electrons scattering in process of collision with atoms may be incomplete and therefore not quite correct. While ignoring the process of acquiring energy by electrons to which may be involved in another fundamental physical constant such as Planck constant, the obtained model would be not quite perfect. These both sides of process combine a balanced approach to the problem of temperature arising as the heat manifestation (in the case of transmission of electric current through the substance) of the conduction electrons interacting with atoms. Therefore, occurrence of the Planck constant in proposed by us the Quantum Unit of Temperature becomes reasonable. It is proved the existence of Quantum Unit of Temperature caused by single electron-phonon dissipation per second and determined its value with the uncertainty defined by the set of different physical methods. The possibility of researching the most contemporary measure of temperature on the basis of fundamental physical constants with involvement of the Standard of Electrical Resistance on the basis of Inverse of Conductance Quantum as well as the Standard of Voltage based on the Josephson junctions array is considered. For this purpose are involved the Standard of electrical resistance on the basis of Inverse of Conductance Quantum as well as the Standard of voltage based on the Josephson junctions that can produce voltage pulses with time-integrated areas perfectly quantized in integer values of h/2e. As mentioned resistance we propose to study FET construction, namely the CNTFET with built-in CNT which has to be superconductive. Source and drain have to be manufactured from two dissimilar conductive metals (for example constantan and copper) that constitute the T-type thermocouple via CNT quasi-junction. The last is inherent in resistance Kl 2R he= which is equal to 25812.807 557 ± 0.0040 Ώ, due to transient resistance of contacts. While studying the dissipation of electric power on such an electric resistance in temperature measurement area, it becomes able the estimation of temperature jump conjugated with I Net= which is formed per unit time t by N conduction electrons of each charge e that transfer energy 32 kT to atoms of matter. Resulting value of temperature jump is deduced, and it is reduced later to single electron-phonon dissipation per second. Received value is identified as Reduced Quantum Unit of Temperature: 1 . [ ]12 1 .3 . t sN BT h K sk s D ®®D = é ù × êë úû. On condition of power supply from Johnston junctions array, it appears an opportunity to pass a discrete, clearly appointed number of electrons through Standard’s CNT. The studied temperature jump is easiest to measure with minimal methodical error with help of built-in high-mentioned thermocouple. It is determined by electric energy dissipated on CNTFET contacts at passing a current, via ratio of h and kB and is equal to 3.199 493 42 ∙ 10-11 K with relative standard uncertainty 59.2∙10-8 (defined by well-known values h and kB of NIST tables). It can be extremely helpful at Quantum Temperature Measurement Standard design.uk_UA
dc.identifier.citationСтадник Б. Основи квантової термометрії / Б. Стадник, С. Яцишин // Вимірювальна техніка та метрологія : міжвідомчий науково-технічний збірник / Міністерство освіти і науки України ; відповідальний редактор Б. І. Стадник. – Львів : Видавництво Львівської політехніки, 2016. – Випуск 77. – С. 40–47. – Бібліографія: 17 назв.uk_UA
dc.publisherВидавництво Львівської політехнікиuk_UA
dc.relation.references1. Mills Ia., Quinn T., Mohr P., Taylor B. and Williams E. The New SI: units and fundamental constants (Royal Society Discussing Meeting, Jan. 2011). 2. Томилин К. А. Планковские величины // 100 лет квантовой теории. ис- Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua Вимірювальна техніка та метрологія, № 77, 2016 р. 47 тория. Физика. Философия : труды междунар. конф. — М.: НИА-Природа, 2002.— С. 105–113. 3. Podesta M. de The definition of the Kelvin in the New SI: its rationale, implementation and implications // Abstracts of XIII International Symposium on Temperature and Thermal Measurements in Industry and Science, TEMPMECO 2016, Zakopane, Polska, 26.06–01.07.2016. – P. 12. 4. Consultative Committee for Thermometry, Mise en Pratique for the definition of the Kelvin (Bureau International des Poids et Measures, S’evres, France, 2006). 5. Дорожовець М. М. Опрацювання результатів вимірювань: навч. посібник. – Львів: Вид-во Нац. ун-ту "Львівська політехніка", 2007. 6. Hohmann M., Breitkreutz P., Schalles M., Fröhlich T. Calibration of heat flux sensors with small heat fluxes // In Proceedings of the 58 Internationales Wissenschaftliches Kolloquium: “In Shaping the future by engineering”, p. 29 (Technische Universität, Ilmenau, Germany, 08–12 Sept. 2014). 7. Lindeman M. Microcalorimetry and transition-edge sensor, Thesis UCRL-LR-142199 (US Department of Energy, Laurence Liverpool National laboratory, April 2000). 8. Benz S. P., A. Pollarolo J. Qu, Rogalla H., Urano C., Tew W. L., Dresselhaus P. D., White D. R. An Electronic Measurement of the Boltzmann Constant, Metrologia, 48 142 (2011), 23 p. 9. Pitre L., Sparasci F., Truong D., GuillouA., Risegari L., ·Him M. Measurement of the Boltzmann Constant kB Using a Quasi-Spherical Acoustic Resonator, Int J Thermophys. 32:1825–1886 (2011); DOI 10.1007/s10765-011-10. 10. Giesbers A. J., Rietveld G., Houtzager E. et al. Quantum resistance metrology in graphene, Applied Physics Letters, 93, pp. 222109-1 … 3 (2008); DOI: 10, 1063/1.3043426. 11. A Practical Josephson Voltage Standard at One Volt. http://www.lee. eng.uerj.br/ downloads/graduacao/ medidas_eletricas JosephsonJunction.pdf. 12. Joyez P., Vion D., Götz M., Devoret M. and Esteve D. The Josephson effect in nanoscale tunnel junctions, Journ. of Superconductivity, 12, 6, pp. 757–766 (1999). 13. Sahoo R., Mishra R. Simulations of Carbon Nanotube Field Effect Transistors, Internat. Journ. of Electronic Engineering Research, 1, 2, pp. 117–125 (2009). 14. The NIST Reference on Constants, Units, and Uncertainty, CODATA Internationally Recommended 2014 Values on Fundamental Physical Constants.. 15. Pitre L., Risegari L., Sparasci F., Plimmer M. D., Himbert M. E., Giuliano Albo P. Determination of the Boltzmann constant from the speed of sound in helium gas at the triple point of water. Metrologia, Focus on the Boltzmann Constant, 52, 5 (BIPM & IOP Publishing, 19 Aug. 2015). 16. Daussy C., Guinet M., Amy-Klein A., Djerroud K., et al, First Direct Determination of the Boltzmann Constant by an Optical Method. http://arxiv.org/ftp/quant-ph/papers /0701/0701176.pdf. 17. Novoselov K. S. et al. Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379 (2007).uk_UA
dc.subjectеталон температуриuk_UA
dc.subjectперевизначення поняття “температура”uk_UA
dc.subjectквантова одиниця термодинамічної температуриuk_UA
dc.subjectэталон температурыuk_UA
dc.subjectперевизначення понятия “температура”uk_UA
dc.subjectквантовая единица термодинамической температурыuk_UA
dc.subjecttemperature standarduk_UA
dc.subjectredefinition of the “Temperature”uk_UA
dc.subjectquantum unit of thermodynamic temperatureuk_UA
dc.subject.udc536.5; 536.5.081uk_UA
dc.titleОснови квантової термометріїuk_UA


Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
349.58 KB
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
2.99 KB
Item-specific license agreed upon to submission