Дослідження параметрів сучасної системи клімат-контролю в офісних приміщеннях

dc.citation.epage136
dc.citation.issue1
dc.citation.journalTitleКомп'ютерні системи та мережі
dc.citation.spage125
dc.citation.volume5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСурков, Є. Ф.
dc.contributor.authorШпак, О. І.
dc.contributor.authorSurkov, Y.
dc.contributor.authorShpak, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-23T09:11:03Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВимірювання і контроль температури середовища у приміщенні є одним з найголовніших вимірювань, котрі людина виконує щодня. Вимірювання температури застосовують для контролю об’єктів, де важливо постійне дотримання певного температурного режиму або де різкі перепади температури можуть впливати на ефективність кінцевого результату роботи цього об’єкта. Віддалений контроль цих показників дасть змогу менеджменту оперативно втручатись у роботу підприємства для усунення недоліків, які можуть призвести до втрати продуктивності об’єкта. Розглянуто реалізацію приладу для вимірювання температури на базі мікроконтролера STM32F746ZGTx. Для отримування даних температури використано давач HTU21D, який може одержувати дані як про температуру навколишнього середовища, так і про його вологість. Характеристики давача такі: діапазон вимірювання температури від –40 °C до +125 °C; діапазон вимірювання відносної вологості 0–100 %; похибка температури Δ0,4 °C; похибка вологості Δ3 %; напруга живлення 1,5–3,6 В; протокол зв’язку I²C, до 400 кГц. Для відображення даних для користувача є LCD дисплей, який також використовує протокол зв’язку I²C і джерело живленням 5 В. Для реалізації багатозадачної роботи приладу застосовано операційну систему FreeRtos.
dc.description.abstractMeasuring and controlling the temperature of the environment in the room is one of the most important measurements that a person makes every day. Temperature measurements are used to control objects where it is important to constantly maintain a certain temperature regime, or where sharp temperature changes can affect the efficiency of the final result of the operation of this object. Remote control of these indicators will allow the management to quickly intervene in the work of the enterprise to eliminate problems that may lead to a loss of the object’s productivity. This article considers the implementation of a device for measuring temperature based on the STM32F746ZGTx microcontroller. The HTU21D sensor is used to receive temperature The FreeRtos operating system will also be used to implement multitasking of the device. data, which can receive data on both the ambient temperature and its humidity. The characteristics of the sensor are as follows: temperature measurement range from –40 °C to +125 °C; relative humidity measurement range 0–100 %, temperature error Δ0.4 °C; humidity error Δ3 %; supply voltage from 1.5 to 3.6 V; I²C communication protocol, up to 400 kHz. An LCD display is used to display data to the user, which also uses the I²C communication protocol and a 5 V power supply. The FreeRtos operating system will also be used to implement multitasking of the device.
dc.format.extent125-136
dc.format.pages12
dc.identifier.citationСурков Є. Ф. Дослідження параметрів сучасної системи клімат-контролю в офісних приміщеннях / Є. Ф. Сурков, О. І. Шпак // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — Том 5. — № 1. — С. 125–136.
dc.identifier.citationenSurkov Y. Research of the parameters of the modern climate control system in office premises / Y. Surkov, O. Shpak // Computer Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 125–136.
dc.identifier.doidoi.org/10.23939/csn2023.01.125
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111630
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи та мережі, 1 (5), 2023
dc.relation.ispartofComputer Systems and Networks, 1 (5), 2023
dc.relation.references1. Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009, 9, 6869–6896. DOI: https://doi.org/10.3390/s90906869.
dc.relation.references2. Spencer, B.; Al-Obeidat, F. Temperature forecasts with stable accuracy in a smart home. Procedia Comput. Sci. 2016, 83, 726–733. DOI: https://doi.org/10.1016/j.procs.2016.04.160
dc.relation.references3. Chen, W.; Dols, S.; Oetomo, S.B.; Feijs, L. Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. In Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 10–12 September 2010; 188–194. DOI: https://doi.org/10.1145/2221924.2221960
dc.relation.references4. Goumopoulos, C.; O’Flynn, B.; Kameas, A. Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 2014, 105, 20–33. DOI: https://doi.org/10.1016/j.compag.2014.03.012.
dc.relation.references5. Hans, V. H. High-precision measurement of absolute temperatures using thermistors. Proc. Estonian Acad. Sci. Eng. 2007, 13, 379–383. DOI: 10.1109/ISIE.1992.279626
dc.relation.references6. Gowen, A. A.; Tiwari, B.K.; Cullen, P. J.; McDonnell, K.; O’Donnell, C. P. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 2010, 21, 190–200. DOI: https://doi.org/10.1016/j.tifs.2009.12.002
dc.relation.references7. Rudtsch, S.; von Rohden, C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement 2015, 76, 1–6. DOI: https://doi.org/10.1016/j.measurement.2015.07.028.
dc.relation.references8. Rana, K. P. S.; Mittra, N.; Pramanik, N.; Dwivedi, P.; Mahajan, P. A virtual instrumentation approach to neural network-based thermistor linearization on field programmable gate array. Exp. Tech. 2015, 39, 23–30. DOI: https://doi.org/10.1111/ext.12011.
dc.relation.references9. Xie, W.; Yang, M.; Cheng, Y.; Li, D.; Zhang, Y.; Zhuang, Z. Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face. Opt. Fiber Technol. 2014, 20, 314–319. journal ISSN: 1068-5200. DOI: https://doi.org/10.1016/j.yofte.2014.03.008.
dc.relation.references10. Moreno, J. C.; Bueno, L.; Pons, J. L.; Baydal-Bertomeu, J. M.; Belda-Lois, J. M.; Prat, J.M.; Barberá, R. Wearable Robot Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470512944. DOI: https://doi.org/10.1002/9780470987667.ch6.
dc.relation.references11. Yeo, T. L.; Sun, T.; Grattan, K. T. V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators a Phys. 2008, 144, 280–295. DOI: https://doi.org/10.1016/j.sna.2008.01.017.
dc.relation.references12. Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M. J. A Polymer Optical Fiber Temperature Sensor Based on Material Features. Sensors 2018, 18, 301. DOI: https://doi.org/10.3390/s18010301.
dc.relation.references13. Li, C.; Ning, T.; Zhang, C.; Li, J.; Wen, X.; Pei, L.; Gao, X.; Lin, H. Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating. Sens. Actuators A Phys. 2016, 245, 49–53. DOI: 10.1016/j.sna.2016.04.046.
dc.relation.references14. Churenkov, A. V. Resonant micromechanical fiber optic sensor of relative humidity. Measurement, 2014, 55, 33–38. DOI: https://doi.org/10.1016/j.measurement.2014.04.032.
dc.relation.references15. Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Fiber optic humidity sensor based on the graphene oxide/PVA composite film. Opt. Commun. 2016, 372, 229–234. DOI: https://doi.org/10.1016/j.optcom.2016.04.030
dc.relation.references16. Ascorbe, J.; Corres, J. M.; Matias, I. R.; Arregui, F. J. High sensitivity humidity sensor based on claddingetched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. DOI: https://doi.org/10.1016/j.snb.2016.04.045.
dc.relation.references17. Berruti, G.; Consales, M.; Cutolo, A.; Cusano, A.; Breglio, G.; Buontempo, S.; Petagna, P.; Giordano, M. Radiation hard humidity sensors for high energy physics applications using polymide-coated Fiber Bragg Gratings sensors. Sens. Acuators B Chem. 2013, 177, 94–102. DOI: https://doi.org/10.1088/1748-0221/9/03/C03040
dc.relation.references18. Zhu, T.; Ke, T.; Rao, Y.; Chiang, K. S. Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685. DOI: https://doi.org/10.3390/s22155722.
dc.relation.references19. Liu, Y.; Peng, W.; Liang, Y.; Zhang, X.; Zhou, X.; Pan, L. Fiber-optic Mach-Zehnder interferometric sensor high-sensitivity for high temperature measurement. Opt. Commun. 2013, 300, 194–198. DOI: https://doi.org/10.1016/j.optcom.2013.02.054.
dc.relation.references20. Rogério da Silva Marques, R.; Prado, A. R.; da Costa Antunes, P. F.; de Brito André, P. S.; Ribeiro, M. R. N.; Frizera-Neto, A.; Pontes, M. J. Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors 2015, 15, 30693–30703. DOI: https://doi.org/10.3390/s151229811.
dc.relation.references21. Tapetado, A.; Pinzon, P. J.; Zubia, J.; Vazquez, C. Polymer Optical Fiber Temperature Sensor With Dual Wavelength Compensation of Power Fluctuations. J. Lightwave Technol. 2015, 33, 2716–2723. DOI: https://doi.org/10.1109/JLT.2015.2408368.
dc.relation.referencesen1. Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009, 9, 6869–6896. DOI: https://doi.org/10.3390/s90906869.
dc.relation.referencesen2. Spencer, B.; Al-Obeidat, F. Temperature forecasts with stable accuracy in a smart home. Procedia Comput. Sci. 2016, 83, 726–733. DOI: https://doi.org/10.1016/j.procs.2016.04.160
dc.relation.referencesen3. Chen, W.; Dols, S.; Oetomo, S.B.; Feijs, L. Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. In Proceedings of the 5th International Conference on Body Area Networks, Corfu, Greece, 10–12 September 2010; 188–194. DOI: https://doi.org/10.1145/2221924.2221960
dc.relation.referencesen4. Goumopoulos, C.; O’Flynn, B.; Kameas, A. Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 2014, 105, 20–33. DOI: https://doi.org/10.1016/j.compag.2014.03.012.
dc.relation.referencesen5. Hans, V. H. High-precision measurement of absolute temperatures using thermistors. Proc. Estonian Acad. Sci. Eng. 2007, 13, 379–383. DOI: 10.1109/ISIE.1992.279626
dc.relation.referencesen6. Gowen, A. A.; Tiwari, B.K.; Cullen, P. J.; McDonnell, K.; O’Donnell, C. P. Applications of thermal imaging in food quality and safety assessment. Trends Food Sci. Technol. 2010, 21, 190–200. DOI: https://doi.org/10.1016/j.tifs.2009.12.002
dc.relation.referencesen7. Rudtsch, S.; von Rohden, C. Calibration and self-validation of thermistors for high-precision temperature measurements. Measurement 2015, 76, 1–6. DOI: https://doi.org/10.1016/j.measurement.2015.07.028.
dc.relation.referencesen8. Rana, K. P. S.; Mittra, N.; Pramanik, N.; Dwivedi, P.; Mahajan, P. A virtual instrumentation approach to neural network-based thermistor linearization on field programmable gate array. Exp. Tech. 2015, 39, 23–30. DOI: https://doi.org/10.1111/ext.12011.
dc.relation.referencesen9. Xie, W.; Yang, M.; Cheng, Y.; Li, D.; Zhang, Y.; Zhuang, Z. Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face. Opt. Fiber Technol. 2014, 20, 314–319. journal ISSN: 1068-5200. DOI: https://doi.org/10.1016/j.yofte.2014.03.008.
dc.relation.referencesen10. Moreno, J. C.; Bueno, L.; Pons, J. L.; Baydal-Bertomeu, J. M.; Belda-Lois, J. M.; Prat, J.M.; Barberá, R. Wearable Robot Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 9780470512944. DOI: https://doi.org/10.1002/9780470987667.ch6.
dc.relation.referencesen11. Yeo, T. L.; Sun, T.; Grattan, K. T. V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators a Phys. 2008, 144, 280–295. DOI: https://doi.org/10.1016/j.sna.2008.01.017.
dc.relation.referencesen12. Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M. J. A Polymer Optical Fiber Temperature Sensor Based on Material Features. Sensors 2018, 18, 301. DOI: https://doi.org/10.3390/s18010301.
dc.relation.referencesen13. Li, C.; Ning, T.; Zhang, C.; Li, J.; Wen, X.; Pei, L.; Gao, X.; Lin, H. Liquid level measurement based on a no-core fiber with temperature compensation using a fiber Bragg grating. Sens. Actuators A Phys. 2016, 245, 49–53. DOI: 10.1016/j.sna.2016.04.046.
dc.relation.referencesen14. Churenkov, A. V. Resonant micromechanical fiber optic sensor of relative humidity. Measurement, 2014, 55, 33–38. DOI: https://doi.org/10.1016/j.measurement.2014.04.032.
dc.relation.referencesen15. Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Fiber optic humidity sensor based on the graphene oxide/PVA composite film. Opt. Commun. 2016, 372, 229–234. DOI: https://doi.org/10.1016/j.optcom.2016.04.030
dc.relation.referencesen16. Ascorbe, J.; Corres, J. M.; Matias, I. R.; Arregui, F. J. High sensitivity humidity sensor based on claddingetched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. DOI: https://doi.org/10.1016/j.snb.2016.04.045.
dc.relation.referencesen17. Berruti, G.; Consales, M.; Cutolo, A.; Cusano, A.; Breglio, G.; Buontempo, S.; Petagna, P.; Giordano, M. Radiation hard humidity sensors for high energy physics applications using polymide-coated Fiber Bragg Gratings sensors. Sens. Acuators B Chem. 2013, 177, 94–102. DOI: https://doi.org/10.1088/1748-0221/9/03/P.03040
dc.relation.referencesen18. Zhu, T.; Ke, T.; Rao, Y.; Chiang, K. S. Fabry-Perot optical fiber tip sensor for high temperature measurement. Opt. Commun. 2010, 283, 3683–3685. DOI: https://doi.org/10.3390/s22155722.
dc.relation.referencesen19. Liu, Y.; Peng, W.; Liang, Y.; Zhang, X.; Zhou, X.; Pan, L. Fiber-optic Mach-Zehnder interferometric sensor high-sensitivity for high temperature measurement. Opt. Commun. 2013, 300, 194–198. DOI: https://doi.org/10.1016/j.optcom.2013.02.054.
dc.relation.referencesen20. Rogério da Silva Marques, R.; Prado, A. R.; da Costa Antunes, P. F.; de Brito André, P. S.; Ribeiro, M. R. N.; Frizera-Neto, A.; Pontes, M. J. Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors 2015, 15, 30693–30703. DOI: https://doi.org/10.3390/s151229811.
dc.relation.referencesen21. Tapetado, A.; Pinzon, P. J.; Zubia, J.; Vazquez, C. Polymer Optical Fiber Temperature Sensor With Dual Wavelength Compensation of Power Fluctuations. J. Lightwave Technol. 2015, 33, 2716–2723. DOI: https://doi.org/10.1109/JLT.2015.2408368.
dc.relation.urihttps://doi.org/10.3390/s90906869
dc.relation.urihttps://doi.org/10.1016/j.procs.2016.04.160
dc.relation.urihttps://doi.org/10.1145/2221924.2221960
dc.relation.urihttps://doi.org/10.1016/j.compag.2014.03.012
dc.relation.urihttps://doi.org/10.1016/j.tifs.2009.12.002
dc.relation.urihttps://doi.org/10.1016/j.measurement.2015.07.028
dc.relation.urihttps://doi.org/10.1111/ext.12011
dc.relation.urihttps://doi.org/10.1016/j.yofte.2014.03.008
dc.relation.urihttps://doi.org/10.1002/9780470987667.ch6
dc.relation.urihttps://doi.org/10.1016/j.sna.2008.01.017
dc.relation.urihttps://doi.org/10.3390/s18010301
dc.relation.urihttps://doi.org/10.1016/j.measurement.2014.04.032
dc.relation.urihttps://doi.org/10.1016/j.optcom.2016.04.030
dc.relation.urihttps://doi.org/10.1016/j.snb.2016.04.045
dc.relation.urihttps://doi.org/10.1088/1748-0221/9/03/C03040
dc.relation.urihttps://doi.org/10.3390/s22155722
dc.relation.urihttps://doi.org/10.1016/j.optcom.2013.02.054
dc.relation.urihttps://doi.org/10.3390/s151229811
dc.relation.urihttps://doi.org/10.1109/JLT.2015.2408368
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Сурков Є. Ф., Шпак О. І., 2023
dc.subjectтемпература
dc.subjectвологість
dc.subjectдавач
dc.subjectопераційна система FreeRtos
dc.subjectпротокол I2C
dc.subjectмікроконтролер STM32F7
dc.subjecttemperature
dc.subjecthumidity
dc.subjectsensor
dc.subjectFreeRtos operating system
dc.subjectI2C protocol
dc.subjectSTM32F7 microcontroller
dc.subject.udc621.5
dc.titleДослідження параметрів сучасної системи клімат-контролю в офісних приміщеннях
dc.title.alternativeResearch of the parameters of the modern climate control system in office premises
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v5n1_Surkov_Y-Research_of_the_parameters_125-136.pdf
Size:
9.09 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v5n1_Surkov_Y-Research_of_the_parameters_125-136__COVER.png
Size:
419.76 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: