Heat transfer analysis on magneto–ternary nanofluid flow in a porous medium over a moving surface

dc.citation.epage1259
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1250
dc.contributor.affiliationУніверситет Путра Малайзія
dc.contributor.affiliationУніверситет технологій MARA
dc.contributor.affiliationUniversiti Putra Malaysia
dc.contributor.affiliationUniversity Technology MARA
dc.contributor.authorАнуар, Н. С.
dc.contributor.authorХуссейн, Б. Н.
dc.contributor.authorАсукі, Н. А. М.
dc.contributor.authorБачок, Н.
dc.contributor.authorAnuar, N. S.
dc.contributor.authorHussain, B. N.
dc.contributor.authorAsuki, N. A. M.
dc.contributor.authorBachok, N.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:22:00Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДослідників привабили потрійні гібридні наночастинки через їх ефективність у посиленні теплообміну і вони продовжують аналіз робочої рідини. Це дослідження присвячене потоку магнітної потрійної нанорідини у пористому середовищі по рухомій пластині з джоулевим нагріванням. Для аналізу використовується комбінація TiO2, SiO2 і Al2O3 з водою, H2O, як базовою рідиною. Використовуючи перетворення подібності, складність диференціальних рівнянь у частинних похідних (PDE) зводиться до систем звичайних диференціальних рівнянь (ODE), які потім чисельно розв’язуються в MATLAB за допомогою функції bvp4c для різних значень визначальних параметрів. Впливи різних безрозмірних фізичних параметрів на швидкість, температуру, а також на коефіцієнт поверхневого тертя та локальне число Нуссельта представлено у вигляді графіків. Отримано два розв’язки, коли пластина та вільний потік рухаються вздовж протилежних напрямків. Крім того, локальне число Нуссельта збільшується з параметром проникності та параметром всмоктування; збільшення параметра проникності та параметра всмоктування призводить до затримки відриву прикордонного шару; завдяки поєднанню TiO2 з об’ємним відсотком SiO2-Al2O3/H2O покращується передача тепла. Зі збільшенням об’ємної частки наночастинок подібність існуючих розв’язків зменшується.
dc.description.abstractResearchers have become attracted with ternary hybrid nanoparticles because of its effectiveness in enhancing heat transfer and have gone on to further analyze the working fluid. This study is focusing on magneto-ternary nanofluid flow in a porous medium over a moving plate with Joule heating. The combination of TiO2, SiO2, and Al2O3 with water, H2O, as the based fluid is used for the analysis. Using similarity transformation, the complexity of partial differential equations (PDEs) is reduced into ordinary differential equation (ODE) systems, which are then numerically solved in MATLAB using the bvp4c function for various values of the governing parameters. The impacts of different dimensionless physical parameters on velocity, temperature as well as skin friction coefficient and local Nusselt number are reported in the form of graphs. Two solutions are achieved when the plate and free-stream are moving along mutually opposite directions. Further, local Nusselt number increases with permeability parameter and suction parameter. Also, increments in permeability parameter and the suction parameter lead to the delay in the boundary layer separation. Furthermore, by combining TiO2 with a volume percentage of SiO2-Al2O3/H2O, the heat transfer is enhanced. With an increase in nanoparticle volume fraction, the similarity solutions to exist decrease.
dc.format.extent1250-1259
dc.format.pages10
dc.identifier.citationHeat transfer analysis on magneto–ternary nanofluid flow in a porous medium over a moving surface / N. S. Anuar, B. N. Hussain, N. A. M. Asuki, N. Bachok // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1250–1259.
dc.identifier.citationenHeat transfer analysis on magneto–ternary nanofluid flow in a porous medium over a moving surface / N. S. Anuar, B. N. Hussain, N. A. M. Asuki, N. Bachok // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1250–1259.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1250
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64078
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL (United States) (1995).
dc.relation.references[2] Suresh S., Venkitaraj K. P., Selvakumar P., Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 388 (1–3), 41–48 (2011).
dc.relation.references[3] Devi S. P. A., Devi S. S. U. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation. 17 (5), 249–257 (2016).
dc.relation.references[4] Huminic G., Huminic A. Hybrid nanofluids for heat transfer applications – A state-of-the-art review. International Journal of Heat and Mass Transfer. 125, 82–103 (2018).
dc.relation.references[5] Manjunatha S., Puneeth V., Gireesha B. J., Chamkha A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. Journal of Applied and Computational Mechanics. 8 (4), 1279–1286 (2022).
dc.relation.references[6] Shah N. A., Wakif A., El-Zahar E. R., Thumma T., Yook S.-J. Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana–Baleanu time-fractional integral. Alexandria Engineering Journal. 61 (12), 10045–10053 (2022).
dc.relation.references[7] Yahaya R. I., Ali F. M., Arifin N. M., Khashi’ie N. S., Isa S. S. P. M. MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects. Mathematical Modeling and Computing. 9 (4), 871–881 (2022).
dc.relation.references[8] Vishalakshi A. B., Kopp M. I., Mahabaleshwar U. S., Sarris I. E. Ternary hybrid nanofluid flow caused by thermal radiation and mass transpiration in a porous stretching/shrinking sheet. Mathematical Modeling and Computing. 10 (2), 400–409 (2023).
dc.relation.references[9] Eid M. R., Mahny K. L. Flow and heat transfer in a porous medium saturated with a Sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption. Thermal Science and Engineering Progress. 47 (1), 54–71 (2018).
dc.relation.references[10] Kameswaran P. K., Makukula Z. G., Sibanda P., Motsa S. S., Murthy P. V. S. N. A new algorithm for internal heat generation in nanofluid flow due to a stretching sheet in a porous medium. International Journal of Numerical Methods for Heat & Fluid Flow. 24 (5), 1020–1043 (2014).
dc.relation.references[11] Eid M. R., Mahny K. L. Flow of viscoelastic ternary nanofluid over a shrinking porous medium with heat Source/Sink and radiation. Thermal Science and Engineering Progress. 40, 101791 (2023).
dc.relation.references[12] Kausar M. S., Hussanan A., Waqas M., Mamat M. Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation. Chinese Journal of Physics. 78, 435–452 (2022).
dc.relation.references[13] Zeeshan A., Shehzad N., Atif M., Ellahi R., Sait S. M. Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water-and engine-oil-based newtonian fluids through porous media. Symmetry. 14 (2), 406 (2022).
dc.relation.references[14] Abu-Sitta A. M. M. A note on a certain boundary-layer equation. Applied Mathematics and Computation. 64 (1), 73–77 (1994).
dc.relation.references[15] Wang L. A new algorithm for solving classical Blasius equation. Applied Mathematics and Computation. 157 (1), 1–9 (2004).
dc.relation.references[16] Cortell R. Numerical solutions of the classical Blasius flat-plate problem. Applied Mathematics and Computation. 170 (1), 706–710 (2005).
dc.relation.references[17] Idris S., Jamaludin A., Nazar R., Pop I. Heat transfer characteristics of magnetized hybrid ferrofluid flow over a permeable moving surface with viscous dissipation effect. Heliyon. 9 (5), e15907 (2023).
dc.relation.references[18] Samat N. A. A., Bachok N., Arifin N. M. Carbon Nanotubes (CNTs) Nanofluids Flow and Heat Transfer under MHD Effect over a Moving Surface. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 103 (1), 165–178 (2023).
dc.relation.references[19] Aminuddin N. A., Nasir N. A. A. M., Jamshed W., Ishak A., Pop I., Eid M. R. Impact of Thermal Radiation on MHD GO-Fe2O4/EG Flow and Heat Transfer over a Moving Surface. Symmetry. 15 (3), 584 (2023).
dc.relation.references[20] Khashi’ie N. S., Arifin N. M., Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal. 61 (3), 1938–1945 (2022).
dc.relation.references[21] Makinde O. D., Aziz A. MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. International Journal of Thermal Sciences. 49 (9), 1813–1820 (2010).
dc.relation.references[22] Alharbi K. A. M., Ahmed A. E. S., Sidi M. O., Ahammad N. A., Mohamed A., El-Shorbagy M. A., Bilal M., Marzouki R. Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines. 13 (4), 588 (2022).
dc.relation.references[23] Rohni A. M., Ahmad S., Pop I. Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. International Journal of Numerical Methods for Heat & Fluid Flow. 21 (7), 828–846 (2011).
dc.relation.referencesen[1] Choi S. U. S., Eastman J. A. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL (United States) (1995).
dc.relation.referencesen[2] Suresh S., Venkitaraj K. P., Selvakumar P., Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 388 (1–3), 41–48 (2011).
dc.relation.referencesen[3] Devi S. P. A., Devi S. S. U. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation. 17 (5), 249–257 (2016).
dc.relation.referencesen[4] Huminic G., Huminic A. Hybrid nanofluids for heat transfer applications – A state-of-the-art review. International Journal of Heat and Mass Transfer. 125, 82–103 (2018).
dc.relation.referencesen[5] Manjunatha S., Puneeth V., Gireesha B. J., Chamkha A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. Journal of Applied and Computational Mechanics. 8 (4), 1279–1286 (2022).
dc.relation.referencesen[6] Shah N. A., Wakif A., El-Zahar E. R., Thumma T., Yook S.-J. Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana–Baleanu time-fractional integral. Alexandria Engineering Journal. 61 (12), 10045–10053 (2022).
dc.relation.referencesen[7] Yahaya R. I., Ali F. M., Arifin N. M., Khashi’ie N. S., Isa S. S. P. M. MHD flow of hybrid nanofluid past a stretching sheet: double stratification and multiple slips effects. Mathematical Modeling and Computing. 9 (4), 871–881 (2022).
dc.relation.referencesen[8] Vishalakshi A. B., Kopp M. I., Mahabaleshwar U. S., Sarris I. E. Ternary hybrid nanofluid flow caused by thermal radiation and mass transpiration in a porous stretching/shrinking sheet. Mathematical Modeling and Computing. 10 (2), 400–409 (2023).
dc.relation.referencesen[9] Eid M. R., Mahny K. L. Flow and heat transfer in a porous medium saturated with a Sisko nanofluid over a nonlinearly stretching sheet with heat generation/absorption. Thermal Science and Engineering Progress. 47 (1), 54–71 (2018).
dc.relation.referencesen[10] Kameswaran P. K., Makukula Z. G., Sibanda P., Motsa S. S., Murthy P. V. S. N. A new algorithm for internal heat generation in nanofluid flow due to a stretching sheet in a porous medium. International Journal of Numerical Methods for Heat & Fluid Flow. 24 (5), 1020–1043 (2014).
dc.relation.referencesen[11] Eid M. R., Mahny K. L. Flow of viscoelastic ternary nanofluid over a shrinking porous medium with heat Source/Sink and radiation. Thermal Science and Engineering Progress. 40, 101791 (2023).
dc.relation.referencesen[12] Kausar M. S., Hussanan A., Waqas M., Mamat M. Boundary layer flow of micropolar nanofluid towards a permeable stretching sheet in the presence of porous medium with thermal radiation and viscous dissipation. Chinese Journal of Physics. 78, 435–452 (2022).
dc.relation.referencesen[13] Zeeshan A., Shehzad N., Atif M., Ellahi R., Sait S. M. Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water-and engine-oil-based newtonian fluids through porous media. Symmetry. 14 (2), 406 (2022).
dc.relation.referencesen[14] Abu-Sitta A. M. M. A note on a certain boundary-layer equation. Applied Mathematics and Computation. 64 (1), 73–77 (1994).
dc.relation.referencesen[15] Wang L. A new algorithm for solving classical Blasius equation. Applied Mathematics and Computation. 157 (1), 1–9 (2004).
dc.relation.referencesen[16] Cortell R. Numerical solutions of the classical Blasius flat-plate problem. Applied Mathematics and Computation. 170 (1), 706–710 (2005).
dc.relation.referencesen[17] Idris S., Jamaludin A., Nazar R., Pop I. Heat transfer characteristics of magnetized hybrid ferrofluid flow over a permeable moving surface with viscous dissipation effect. Heliyon. 9 (5), e15907 (2023).
dc.relation.referencesen[18] Samat N. A. A., Bachok N., Arifin N. M. Carbon Nanotubes (CNTs) Nanofluids Flow and Heat Transfer under MHD Effect over a Moving Surface. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 103 (1), 165–178 (2023).
dc.relation.referencesen[19] Aminuddin N. A., Nasir N. A. A. M., Jamshed W., Ishak A., Pop I., Eid M. R. Impact of Thermal Radiation on MHD GO-Fe2O4/EG Flow and Heat Transfer over a Moving Surface. Symmetry. 15 (3), 584 (2023).
dc.relation.referencesen[20] Khashi’ie N. S., Arifin N. M., Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Engineering Journal. 61 (3), 1938–1945 (2022).
dc.relation.referencesen[21] Makinde O. D., Aziz A. MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition. International Journal of Thermal Sciences. 49 (9), 1813–1820 (2010).
dc.relation.referencesen[22] Alharbi K. A. M., Ahmed A. E. S., Sidi M. O., Ahammad N. A., Mohamed A., El-Shorbagy M. A., Bilal M., Marzouki R. Computational valuation of Darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines. 13 (4), 588 (2022).
dc.relation.referencesen[23] Rohni A. M., Ahmad S., Pop I. Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. International Journal of Numerical Methods for Heat & Fluid Flow. 21 (7), 828–846 (2011).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectпотрійна нанорідина
dc.subjectтечія граничного шару
dc.subjectтеплообмін
dc.subjectпористе середовище
dc.subjectрухома пластина
dc.subjectternary nanofluid
dc.subjectboundary layer flow
dc.subjectheat transfer
dc.subjectporous medium
dc.subjectmoving plate
dc.titleHeat transfer analysis on magneto–ternary nanofluid flow in a porous medium over a moving surface
dc.title.alternativeАналіз теплообміну при потоці магнітної потрійної нанорідини в пористому середовищі по рухомій поверхні
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Anuar_N_S-Heat_transfer_analysis_1250-1259.pdf
Size:
1.43 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Anuar_N_S-Heat_transfer_analysis_1250-1259__COVER.png
Size:
441.72 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: