Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge

dc.citation.epage59
dc.citation.issue1 (26)
dc.citation.journalTitleГеодинаміка : науковий журнал
dc.citation.spage43
dc.contributor.affiliationАзербайджанська національна академія наук
dc.contributor.affiliationAzerbaijan National of Academy Sciences
dc.contributor.authorАлієв, Аділь А.
dc.contributor.authorАббасов, Орхан Р.
dc.contributor.authorAliyev, Adil A.
dc.contributor.authorAbbasov, Orhan R.
dc.coverage.placenameЛьвів
dc.date.accessioned2020-02-19T13:04:13Z
dc.date.available2020-02-19T13:04:13Z
dc.date.created2019-06-26
dc.date.issued2019-06-26
dc.description.abstractВідповідно до хімічного складу, встановлені протоліти та геотектонічні умови формування горючих сланців середньо-еоценового віку, відібраних з поверхневих виходів і викидів грязьових вулканів південно-східного занурення Великого Кавказу. Отримані дані зіставлені з палеогеодинамічними умовами району дослідження. Хімічний склад сланців встановлений за допомогою мас-спектрометрів “S8 TIGER Series 2 WDXRF” і “Agilent 7700 Series ICP-MS”, а при визначенні віку порід вико- ристовувалися мікроскопи “Loupe Zoom Paralux XTL 745” і “MБC-10” і цифрова камера “OptixCam”. Проведена нормалізація (порівняння з пост-архейськими сланцями Австралії, верхньою конти- нентальною корою і континентальною корою) у зв’язку з особливостями розподілу хімічних елементів, а також із застосуванням різних індексів і діаграм, встановлені джерела материнських магматичних порід і палеотектонічні умови їх формування. Встановлено, що базальт-андезитові утворення принесені з комплексів мафічних і проміжних джерел. Геотектонічні умови формування горючих сланців відповідають активним районам континентальної кори, а також зонам переходу від рифтогену до колізії або геодинамічним умовам первинної колізії. Отже, процес осадконакопичення, що відбувався в умовах мілководного морського басейну в зв’язку з первинною колізією між внутрішніми плитами, пов’язаний палеоцен-міоценовим басейном (північна гілка Мезотетіса в системі Крим-Великий Кавказ-Копетдаг). Особливу роль у встановленні походження кластичних матеріалів базальт-андезитового складу, відіграє юрський і крейдяний вулканізм, пов'язаний з субдукцією, встановленою на південному схилі Великого Кавказу (Тфанське і Вандамське підняття).
dc.description.abstractThe protolith and tectonic settings of the Middle Eocene oil shale sampled from the outcrops and ejected products of mud volcanoes in the Greater Caucasus southeastern plunge were determined using bulk rock geochemistry data. The obtained results were adapted to the palaeogeodynamic conditions of the study areas. Method. The concentrations of element content in the samples were measured by “S8 TIGER Series 2 WDXRF” and “Agilent 7700 Series ICP-MS” mass spectrometers. The microscopes “Loupe Zoom Paralux XTL 745” and “MC-10” and a digital camera “OptixCam” were used to define the age of samples. The distribution of element contents of samples was normalized to Post-Archaean Australian shale (PAAS), Upper Continental Crust (UCC) and Continental Crust (CC). The source terrains of the parent rocks and tectonic settings of oil shale were determined using various ratios and diagrams. Results. The samples show a nature of basaltic and basalt andesitic protolith, which supports an idea that the original composition was derived from mafic and intermediate source terrains. The tectonic setting of oil shale correlates well with the active continental margin and the rift-tocollision transition or paleogeodynamic conditions of the initial collision. Thus, in the shallow sea basin and the initial collision conditions, the process of sedimentation in the middle Eocene was probably associated with the final Paleocene- Eocene basin, which was the northern branch of Meso-Tethys in the Crimea-Greater Caucasus-Kopetdag system. The Jurassic and Cretaceous volcanism associated with subductions, which occurred on the southern slope of the Greater Caucasus (in the Tufan and Vandam uplifts), played an important role as a source of transported materials. Scientific novelty. In the published literature, numerous geological and organic-geochemical features of oil shale in Azerbaijan have been studied. The literature on the study of the provenance and tectonic setting is nonexistent, and this study is the first attempt. Practical significance. The obtained results and the used methodology can be applied to study the genesis of the Middle Eocene deposits and as well as sedimentary rocks in Azerbaijan.
dc.format.extent43-59
dc.format.pages17
dc.identifier.citationAliyev A. A. Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge / Adil A. Aliyev, Orhan R. Abbasov // Geodynamics : scientific journal. — Львів : Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 43–59.
dc.identifier.citationenAliyev A. A. Nature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge / Adil A. Aliyev, Orhan R. Abbasov // Geodynamics : scientific journal. — Lviv Polytechnic Publishing House, 2019. — No 1 (26). — P. 43–59.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45873
dc.language.isoen
dc.publisherLviv Polytechnic Publishing House
dc.relation.ispartofГеодинаміка : науковий журнал, 1 (26), 2019
dc.relation.ispartofGeodynamics : scientific journal, 1 (26), 2019
dc.relation.referencesAbbasov, O. R. (2009). Distribution regularities of
dc.relation.referencesshales of Paleogene–Miocene sediments in
dc.relation.referencesGobustan (Abstract of PhD thesis … on PhD in
dc.relation.referencesEarth Sciences). 26.11.09 / O. R. Abbasov
dc.relation.references[Institute of Geology and Geophysics, Azerbaijan
dc.relation.referencesNational Academy of Sciences], Baku.
dc.relation.referencesAbbasov, O. R. (2015). Oil shale of Azerbaijan:
dc.relation.referencesgeology, geochemistry and probable reserves.
dc.relation.referencesInternational Journal of Research Studies in
dc.relation.referencesScience, Engineering and Technology, 2(9), 31–37.
dc.relation.referencesAbbasov, O. R. (2016). Geological and geochemical
dc.relation.referencesproperties of oil shale in Azerbaijan and
dc.relation.referencespetroleum potential of deep-seated Eocene-
dc.relation.referencesMiocene deposits. European journal of natural
dc.relation.referenceshistory, 2, 31–40.
dc.relation.referencesAbbasov, O. R. (2016). Distribution regularities of oil
dc.relation.referencesshale in Azerbaijan. ISJ Theoretical & Applied
dc.relation.referencesScience, 3(35), 165–171. doi: http://dx.doi.org/10.15863/TAS.2016.03.35.28
dc.relation.referencesAbbasov, O. R. (2017). Distribution regularities and
dc.relation.referencesgeochemistry of oil shales in Azerbaijan. Mineral
dc.relation.referencesresources of Ukraine, 2, 22–30.
dc.relation.referencesAbbasov, O. R., Baloglanov, E. E. & Akhundov, R. V. (2015). Organic compounds in ejected rocks of
dc.relation.referencesmud volcanoes as geological and geochemical
dc.relation.referencesindicators: a study from Shamakhi-Gobustan
dc.relation.referencesregion (Azerbaijan). Azerbaijan, Baku: International
dc.relation.referencesMultidissiplinar Forum “Academic Science Week-2015”.
dc.relation.referencesAbbasov, O. R., Mamedova, A. N., Huseynov, A. R.
dc.relation.references& Baloglanov, E. E. (2013). Some new data of
dc.relation.referencesgeochemical researches of combustible slates of
dc.relation.referencesAzerbaijan. Geology, geophysics and development
dc.relation.referencesof oil and gas fields, 2, 32–35.
dc.relation.referencesAbdullayev, R. N., Mustafayev, M. A., Samedova,
dc.relation.referencesR. A., Shafiyev, Kh. I. & Memedov, M. N. (1991). Petrology of the magmatic complexes of
dc.relation.referencesthe southern slope of the Greater Caucasus
dc.relation.references(Vandam zone). Baku: Publishing house “Elm”.
dc.relation.referencesAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesMammadova, A. N. (2015). Prospects of using of
dc.relation.referencesAzerbaijan oil shale. Proceedings of the
dc.relation.referencesAzerbaijan National Academy of Sciences, 2 (1), 43–47.
dc.relation.referencesAliyev, Ad. A. & Abbasov, O. R. (2016). Alternative
dc.relation.referencesfuel and energy resources of Azerbaijan.
dc.relation.referencesInternational Azerbaijan Journal, 2 (80), 56–62.
dc.relation.referencesAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesMammadova, A. N. (2018). Genesis and organic
dc.relation.referencesgeochemical characteristics of oil shale in eastern
dc.relation.referencesAzerbaijan. SOCAR Proceedings, 3, 4–15. doi: 10.5510/OGP20180300356
dc.relation.referencesAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesMammadova, A. N. (2018). Organic–geochemical
dc.relation.referencesstudy of oil shales in Pre–Caspian–Guba
dc.relation.referencesregion (Azerbaijan). Mineral resources of
dc.relation.referencesUkraine, 3, 13–18. https://doi.org/10.31996/mru.2018.3.13–18
dc.relation.referencesAliyev, Adil & Abbasov, Orhan (2018). Organic
dc.relation.referencesgeochemical characteristics of oil shale in
dc.relation.referencesAzerbaijan. Tehran, Iran: The 36th National and
dc.relation.referencesthe 3rd International Geosciences Congress.
dc.relation.referencesАliyev, H. А., Ahmedbeyli, F. S., Ismayilzade, A. J.,
dc.relation.referencesKengerli, T. N. & Rustamov, M. I. (2005).
dc.relation.referencesGeology of Azerbaijan, (Vol. IV, 506 p.). Baku:
dc.relation.references"Nafta-Press" Publishing house.
dc.relation.referencesAliyev, Ad. A., Aliyev, Ch. S., Feyzullayev, A. A.,
dc.relation.referencesHuseynov D. A., Isayeva M. I., Gadirov F. A.
dc.relation.references& Novruzov, N. A. (2015). Geology of
dc.relation.referencesAzerbaijan ,(Vol. II, 341 p.). Baku: Publishing house “Elm”.
dc.relation.referencesAliyev, Ad. A., Bayramov, A. A., Abbasov, O. R. &
dc.relation.referencesMammadova, A. N. (2014). Reserves of oil shale
dc.relation.referencesand natural bitumen. National Atlas of the Republic
dc.relation.referencesof Azerbaijan, Map (Scale 1:1000000), 101.
dc.relation.referencesAliyev, Ad. A. & Bayramov, A. A. (1999). Some
dc.relation.referencesaspects of the tectonics of the Gobustan mud
dc.relation.referencesvolcanic zones. Proceedings of ANAS, Earth Sciences, 1, 129-131.
dc.relation.referencesAliyev, Ad. A., Guliyev, I. S., Dadashev, F. G. &
dc.relation.referencesRahmanov, R. R. (2015). Atlas of mud volcanoes
dc.relation.referencesin the world. Baku: Publishing house “Nafta–
dc.relation.referencesPress", "Sandro Teti Editore", 361 p.
dc.relation.referencesAlvarez, N. C. & Roser, B. P. (2007). Geochemistry
dc.relation.referencesof black shales from the Lower Cretaceous Paja
dc.relation.referencesFormation, Eastern Cordillera, Colombia: Source
dc.relation.referencesweathering, provenance, and tectonic setting.
dc.relation.referencesJournal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
dc.relation.referencesBabayev, Sh. A., Bagmanov, M. A., Aliyeva,
dc.relation.referencesE. H.–M., Alizade, Kh. A., Kengerli, T. N., Latifova,
dc.relation.referencesY. N. & Zohrabova, V. R. (2015). Geology
dc.relation.referencesof Azerbaijan (Vol. II, 532 p.). Baku: Publishing house “Elm”.
dc.relation.referencesBeard, J. S. (1986). Characteristic mineralogy of arc–
dc.relation.referencesrelated cumulate gabbros: Implications for the
dc.relation.referencestectonic setting of gabbroic plutons and for
dc.relation.referencesandesite genesis. Geology, 14(10), 848–851. https://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
dc.relation.referencesBelov, A. A., Burtman, V. S., Zinkevich, V. P.,
dc.relation.referencesKnipper, A. L., Lobkovsky, L. I., Lukianov,
dc.relation.referencesA. V. … & Rachkov, V. S. (1990). Tectonic
dc.relation.referenceslayering of Lithosphere and Regional Geological
dc.relation.referencesInvestigations. Nauka, Moscow.
dc.relation.referencesBhatia, M. R. (1983). Plate tectonics and geochemical
dc.relation.referencescomposition of sandstones. Journal of Geology, 91(6), 611–627. DOI: 10.1086/628815
dc.relation.referencesCampos Neto, M. D. C., Basei, M. A. S., Assis Janasi,
dc.relation.referencesV. D. & Moraes, R. (2011). Orogen migration
dc.relation.referencesand tectonic setting of the Andrelândia Nappe
dc.relation.referencessystem: an Ediacaran western Gondwana collage,
dc.relation.referencessouth of São Francisco craton. Journal of South
dc.relation.referencesAmerican Earth Sciences, 32, 393–406. DOI: 10.1016/j.jsames.2011.02.006
dc.relation.referencesColeman, R. G. (1977). Emplacement and metamorphism
dc.relation.referencesof ophiolites. Rend. Soc. Ital. Mineral.
dc.relation.referencesPetrol., 33 (1): 161–190.
dc.relation.referencesErshov, A. V., Brunet, M. –F., Nikishin, A. M., Bolotov,
dc.relation.referencesS. N., Nazarevich, B. P. & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history
dc.relation.referencesand synthesis of subsidence models. Sedimentary
dc.relation.referencesGeology, 156, 95–118, doi: 10.1016/S0037–0738(02)00284–1
dc.relation.referencesGarver, J. I., Royce, P. R. & Smick, T. A. (1996).
dc.relation.referencesChromium and nickel in shale of the Taconic
dc.relation.referencesforeland: a case study for the provenance of fine–
dc.relation.referencesgained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106. https://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
dc.relation.referencesGill, James. (1981). Orogenic Andesites and Plate
dc.relation.referencesTectonics. Springer. 10.1007/978–3–642–68012–0
dc.relation.referencesHayashi, K. I., Fujisawa, H., Holland, H. D. &
dc.relation.referencesOhmoto, H. (1997). Geochemistry of ~1.9 Ga
dc.relation.referencesSedimentary Rocks from Northeastern Labrador,
dc.relation.referencesCanada. Geochimica et Cosmochimica Acta,61(19), 4115–4137. doi:10.1016/s0016–7037(97)00214–7
dc.relation.referencesHiroaki, Ishiga & Kaori, Dozen. (1997). Geochemical
dc.relation.referencesindications of provenance change as recorded in
dc.relation.referencesMiocene shales: opening of the Japan Sea, San'in
dc.relation.referencesregion, southwest Japan. Marine Geology, 144(1–3), 211–228. https://doi.org/10.1016/S0025–3227(97)00104–7
dc.relation.referencesHolland H. D. (1984). The chemical evolution of
dc.relation.referencesatmosphere and oceans. Princeton Univ. Press, Princeton N.J.
dc.relation.referencesIrvine, T. N. & Baragar, W. R. A. (1971). Aguide to
dc.relation.referencesthe chemical classification of the common
dc.relation.referencesvolcanic rocks. Canadian Journal of Earth
dc.relation.referencesSciences, 8(5), 523–548. https://doi.org/10.1139/e71–055
dc.relation.referencesJ. Barry Maynard, Renzo Valloni & Ho–Shing Yu.(1982). Composition of modern deep–sea sands
dc.relation.referencesfrom arc–related basins. Geological Society,
dc.relation.referencesLondon, Special Publications, 10, 551–561. https://doi.org/10.1144/GSL.SP.1982.010.01.36
dc.relation.referencesJ. Brendan Murphy. (2000). Tectonic influence on
dc.relation.referencessedimentation along the southern flank of the late
dc.relation.referencesPaleozoic Magdalen basin in the Canadian
dc.relation.referencesAppalachians: Geochemical and isotopic
dc.relation.referencesconstraints on the Horton Group in the St. Marys
dc.relation.referencesbasin, Nova Scotia GSA Bulletin, 112(7), 997–1011. https://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
dc.relation.referencesKalsbeek, F. & Frei, Robert. (2010). Geochemistry of
dc.relation.referencesPrecambrian sedimentary rocks used to solve
dc.relation.referencesstratigraphical problems: An example from the
dc.relation.referencesNeoproterozoic Volta basin, Ghana. In: Precambrian
dc.relation.referencesResearch, 176 (1–4), 65–76. https://doi.org/10.1016/j.precamres.2009.10.004
dc.relation.referencesKent C. Condie. (1997). Plate Tectonics and Crustal
dc.relation.referencesEvolution (Fourth Edition). Great Britain.
dc.relation.referencesButterworth–Heinemann. https://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
dc.relation.referencesKhain, V. E. (1950). Geotectonic development of the
dc.relation.referencessouth–eastern Caucasus.
dc.relation.referencesKhain, V. E. (1994). Geology of the Northern Eurasia
dc.relation.references(USSR). Second Part of the Geology of the USSR.
dc.relation.referencesPhanerozoic Fold Belts and Young Platforms.
dc.relation.referencesGebru¨der Borntraeger, Berlin.
dc.relation.referencesLe Maitre, R. W., Streckeisen, A., Zanettin, B., Le
dc.relation.referencesBas, M. J., Bonin, B., Bateman … Woolley, A. R. (2002). Igneous Rocks: A Classifi cation and
dc.relation.referencesGlossary of Terms, Recommenda–tions of the
dc.relation.referencesInternational Union of Geological Sciences,
dc.relation.referencesSubcommission of the Systematics of Igneous
dc.relation.referencesRocks. Cambridge, UK: Cambridge University
dc.relation.referencesPress. https://doi.org/10.1017/CBO9780511535581
dc.relation.referencesLe Bas, M. J., Le Maitre, R. W., Streckeisen A. &
dc.relation.referencesZanettin B. (1986). A chemical classifi cation of
dc.relation.referencesvolcanic rocks based on the total alkali–silica
dc.relation.referencesdiagram. Journal of Petrology, 27, 745–750.
dc.relation.referenceshttps://doi.org/10.1093/petrology/27.3.745
dc.relation.referencesMarie–Françoise Brunet, Maxim V. Korotaev, Andrei
dc.relation.referencesV. Ershov & Anatoly M. Nikishin. (2003). The
dc.relation.referencesSouth Caspian Basin: a review of its evolution
dc.relation.referencesfrom subsidence modelling. Sedimentary
dc.relation.referencesGeology, 156, 119–148. https://doi.org/10.1016/S0037–0738(02)00285–3
dc.relation.referencesMilanovsky, E. E. (1991). Geology of the USSR. Part 3 Moscow Univ. Press, Moscow.
dc.relation.referencesMüller, D. & Groves, D. I. (2019). Potassic igneous
dc.relation.referencesrocks and associated gold–copper mineralization (5th ed.). Mineral Resource Reviews. Springer–
dc.relation.referencesVerlag Heidelberg. 10.1007/BFb0017712
dc.relation.referencesP. Huntsman-Mapila, S. Ringrose, A. W. Mackay,
dc.relation.referencesW. S. Downey, M. Modisi, S. H. Coetzee, Jean-
dc.relation.referencesJacques Tiercelin, A. B. Kampunzu & C. Vanderpost. (2006). Use of the geochemical and
dc.relation.referencesbiological sedimentary record in establishing
dc.relation.referencespalaeoenvironments and climate change in the
dc.relation.referencesLake Ngami basin. NW Botswana, 148(1), 51–64. https://doi.org/10.1016/j.quaint.2005.11.029
dc.relation.referencesRoser, B. P. & Korsch, R. J. (1986). Determination of
dc.relation.referencestectonic setting sandstone–mudstone suites using
dc.relation.referencesSiO2 content and K2O/Na2O ratio. Journal of
dc.relation.referencesGeology, 94(5), 635–650.
dc.relation.referencesRoser, B. P. & Korsch, R. J. (1988). Provenance
dc.relation.referencessignatures of sandstone–mudstone suites determined
dc.relation.referencesusing discriminant function analysis of major–
dc.relation.referenceselement data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009–2541(88)90010–1
dc.relation.referencesRudnick, R. L. & Fountain, D. M. (1995). Nature and
dc.relation.referencescomposition of the continental crust – a lower
dc.relation.referencescrustal perspective. Reviews in Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
dc.relation.referencesRudnick, R. L. & Gao, S. (2003). Composition of the
dc.relation.referencesContinental Crust. The Crust: Treatise on Geochemistry,
dc.relation.referencesElsevier–Pergamum, Oxford. http://dx.doi.org/10.1016/b0–08–043751–6/03016–4
dc.relation.referencesRustamov M. I. (2005). South Caspian Basin ‒ geodynimc
dc.relation.referencesevents and processes. Baku: Nafta–Press.
dc.relation.referencesRustamov, M. I. (2008). Geodynamics and magmatism
dc.relation.referencesof the Caspian–Caucasian segment of the
dc.relation.referencesMediterranean belt in the Phanerozoic (Abstract
dc.relation.referencesof science doctor thesis … on doctor science in
dc.relation.referencesEarth Sciences). 07.05.2008. Institute of Geology
dc.relation.referencesand Geophysics, Azerbaijan National Academy of
dc.relation.referencesSciences, Baku.
dc.relation.referencesRustamov M. I. (2015). Main indicators of the
dc.relation.referencescollisional geodynamics of Zagros–Caucasian
dc.relation.referencessegment of Mediterranean belt. Proceedings of
dc.relation.referencesthe Azerbaijan National Academy of Sciences,
dc.relation.referencesEarth Sciences, 1, 3–14.
dc.relation.referencesShaw, D. M. (1968). A review of K–Rb fractionation
dc.relation.referencestrends by covariance analysis. Geochim.
dc.relation.referencesCosmochim. Acta, 32, 573–601. https://doi.org/10.1016/0016–7037(68)90050–1
dc.relation.referencesShikhalibeyli, E. Sh. (1967). Geological structure and
dc.relation.referenceshistory of the tectonic development of the eastern
dc.relation.referencespart of the Lesser Caucasus. Baku: Publishing
dc.relation.referenceshouse "Academy of Sciences" USSR.
dc.relation.referencesSugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R.
dc.relation.references(1996). Anomalously low Al2O3/TiO2 values of
dc.relation.referencesArchaean chertsfrom the Pilbara Block, Western
dc.relation.referencesAustralia—possible evidence of extensive
dc.relation.referenceschemical weathering on the early earth.
dc.relation.referencesPrecambrian Res., 80, 49–76. https://doi.org/10.1016/S0301–9268(96)00005–8
dc.relation.referencesTaylor, S. R. & McLennan, S. M. (1985). The
dc.relation.referencescontinental crust: its composition and evolution.
dc.relation.referencesOxford: Blackwell. https://doi.org/10.1002/gj.3350210116
dc.relation.referencesVerma, S. P. & Armstrong–Altrin, J. S. (2013). New
dc.relation.referencesmulti–dimensional diagrams for tectonic discrimination
dc.relation.referencesof siliciclastic sediments and their application
dc.relation.referencesto Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014
dc.relation.referencesZonenshain, L. P. & Le Pichon, X. (1986). Deep basins of
dc.relation.referencesthe Black Sea and Caspian Sea as remnants of Mesozoic
dc.relation.referencesback–arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040–1951(86)90197–6
dc.relation.referencesZiegler, P. A., & Cavazza, W. (Eds.). (2001).
dc.relation.referencesMesozoic and Cenozoic evolution of the Scythian
dc.relation.referencesPlatform –Black–Sea – Caucasus Peri–Tethys
dc.relation.referencesMemoir 6: Peri–Tethyan Rift. Wrench Basins and
dc.relation.referencesPassive Margins. Me´m. Mus. natn. Hist. nat., Paris.
dc.relation.referencesenAbbasov, O. R. (2009). Distribution regularities of
dc.relation.referencesenshales of Paleogene–Miocene sediments in
dc.relation.referencesenGobustan (Abstract of PhD thesis … on PhD in
dc.relation.referencesenEarth Sciences). 26.11.09, O. R. Abbasov
dc.relation.referencesen[Institute of Geology and Geophysics, Azerbaijan
dc.relation.referencesenNational Academy of Sciences], Baku.
dc.relation.referencesenAbbasov, O. R. (2015). Oil shale of Azerbaijan:
dc.relation.referencesengeology, geochemistry and probable reserves.
dc.relation.referencesenInternational Journal of Research Studies in
dc.relation.referencesenScience, Engineering and Technology, 2(9), 31–37.
dc.relation.referencesenAbbasov, O. R. (2016). Geological and geochemical
dc.relation.referencesenproperties of oil shale in Azerbaijan and
dc.relation.referencesenpetroleum potential of deep-seated Eocene-
dc.relation.referencesenMiocene deposits. European journal of natural
dc.relation.referencesenhistory, 2, 31–40.
dc.relation.referencesenAbbasov, O. R. (2016). Distribution regularities of oil
dc.relation.referencesenshale in Azerbaijan. ISJ Theoretical & Applied
dc.relation.referencesenScience, 3(35), 165–171. doi: http://dx.doi.org/10.15863/TAS.2016.03.35.28
dc.relation.referencesenAbbasov, O. R. (2017). Distribution regularities and
dc.relation.referencesengeochemistry of oil shales in Azerbaijan. Mineral
dc.relation.referencesenresources of Ukraine, 2, 22–30.
dc.relation.referencesenAbbasov, O. R., Baloglanov, E. E. & Akhundov, R. V. (2015). Organic compounds in ejected rocks of
dc.relation.referencesenmud volcanoes as geological and geochemical
dc.relation.referencesenindicators: a study from Shamakhi-Gobustan
dc.relation.referencesenregion (Azerbaijan). Azerbaijan, Baku: International
dc.relation.referencesenMultidissiplinar Forum "Academic Science Week-2015".
dc.relation.referencesenAbbasov, O. R., Mamedova, A. N., Huseynov, A. R.
dc.relation.referencesen& Baloglanov, E. E. (2013). Some new data of
dc.relation.referencesengeochemical researches of combustible slates of
dc.relation.referencesenAzerbaijan. Geology, geophysics and development
dc.relation.referencesenof oil and gas fields, 2, 32–35.
dc.relation.referencesenAbdullayev, R. N., Mustafayev, M. A., Samedova,
dc.relation.referencesenR. A., Shafiyev, Kh. I. & Memedov, M. N. (1991). Petrology of the magmatic complexes of
dc.relation.referencesenthe southern slope of the Greater Caucasus
dc.relation.referencesen(Vandam zone). Baku: Publishing house "Elm".
dc.relation.referencesenAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesenMammadova, A. N. (2015). Prospects of using of
dc.relation.referencesenAzerbaijan oil shale. Proceedings of the
dc.relation.referencesenAzerbaijan National Academy of Sciences, 2 (1), 43–47.
dc.relation.referencesenAliyev, Ad. A. & Abbasov, O. R. (2016). Alternative
dc.relation.referencesenfuel and energy resources of Azerbaijan.
dc.relation.referencesenInternational Azerbaijan Journal, 2 (80), 56–62.
dc.relation.referencesenAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesenMammadova, A. N. (2018). Genesis and organic
dc.relation.referencesengeochemical characteristics of oil shale in eastern
dc.relation.referencesenAzerbaijan. SOCAR Proceedings, 3, 4–15. doi: 10.5510/OGP20180300356
dc.relation.referencesenAliyev, Ad. A., Abbasov, O. R., Ibadzade, A. J. &
dc.relation.referencesenMammadova, A. N. (2018). Organic–geochemical
dc.relation.referencesenstudy of oil shales in Pre–Caspian–Guba
dc.relation.referencesenregion (Azerbaijan). Mineral resources of
dc.relation.referencesenUkraine, 3, 13–18. https://doi.org/10.31996/mru.2018.3.13–18
dc.relation.referencesenAliyev, Adil & Abbasov, Orhan (2018). Organic
dc.relation.referencesengeochemical characteristics of oil shale in
dc.relation.referencesenAzerbaijan. Tehran, Iran: The 36th National and
dc.relation.referencesenthe 3rd International Geosciences Congress.
dc.relation.referencesenAliyev, H. A., Ahmedbeyli, F. S., Ismayilzade, A. J.,
dc.relation.referencesenKengerli, T. N. & Rustamov, M. I. (2005).
dc.relation.referencesenGeology of Azerbaijan, (Vol. IV, 506 p.). Baku:
dc.relation.referencesen"Nafta-Press" Publishing house.
dc.relation.referencesenAliyev, Ad. A., Aliyev, Ch. S., Feyzullayev, A. A.,
dc.relation.referencesenHuseynov D. A., Isayeva M. I., Gadirov F. A.
dc.relation.referencesen& Novruzov, N. A. (2015). Geology of
dc.relation.referencesenAzerbaijan ,(Vol. II, 341 p.). Baku: Publishing house "Elm".
dc.relation.referencesenAliyev, Ad. A., Bayramov, A. A., Abbasov, O. R. &
dc.relation.referencesenMammadova, A. N. (2014). Reserves of oil shale
dc.relation.referencesenand natural bitumen. National Atlas of the Republic
dc.relation.referencesenof Azerbaijan, Map (Scale 1:1000000), 101.
dc.relation.referencesenAliyev, Ad. A. & Bayramov, A. A. (1999). Some
dc.relation.referencesenaspects of the tectonics of the Gobustan mud
dc.relation.referencesenvolcanic zones. Proceedings of ANAS, Earth Sciences, 1, 129-131.
dc.relation.referencesenAliyev, Ad. A., Guliyev, I. S., Dadashev, F. G. &
dc.relation.referencesenRahmanov, R. R. (2015). Atlas of mud volcanoes
dc.relation.referencesenin the world. Baku: Publishing house "Nafta–
dc.relation.referencesenPress", "Sandro Teti Editore", 361 p.
dc.relation.referencesenAlvarez, N. C. & Roser, B. P. (2007). Geochemistry
dc.relation.referencesenof black shales from the Lower Cretaceous Paja
dc.relation.referencesenFormation, Eastern Cordillera, Colombia: Source
dc.relation.referencesenweathering, provenance, and tectonic setting.
dc.relation.referencesenJournal of South American Earth Sciences, 23(4), 271–289. https://doi.org/10.1016/j.jsames.2007.02.003
dc.relation.referencesenBabayev, Sh. A., Bagmanov, M. A., Aliyeva,
dc.relation.referencesenE. H.–M., Alizade, Kh. A., Kengerli, T. N., Latifova,
dc.relation.referencesenY. N. & Zohrabova, V. R. (2015). Geology
dc.relation.referencesenof Azerbaijan (Vol. II, 532 p.). Baku: Publishing house "Elm".
dc.relation.referencesenBeard, J. S. (1986). Characteristic mineralogy of arc–
dc.relation.referencesenrelated cumulate gabbros: Implications for the
dc.relation.referencesentectonic setting of gabbroic plutons and for
dc.relation.referencesenandesite genesis. Geology, 14(10), 848–851. https://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
dc.relation.referencesenBelov, A. A., Burtman, V. S., Zinkevich, V. P.,
dc.relation.referencesenKnipper, A. L., Lobkovsky, L. I., Lukianov,
dc.relation.referencesenA. V. … & Rachkov, V. S. (1990). Tectonic
dc.relation.referencesenlayering of Lithosphere and Regional Geological
dc.relation.referencesenInvestigations. Nauka, Moscow.
dc.relation.referencesenBhatia, M. R. (1983). Plate tectonics and geochemical
dc.relation.referencesencomposition of sandstones. Journal of Geology, 91(6), 611–627. DOI: 10.1086/628815
dc.relation.referencesenCampos Neto, M. D. C., Basei, M. A. S., Assis Janasi,
dc.relation.referencesenV. D. & Moraes, R. (2011). Orogen migration
dc.relation.referencesenand tectonic setting of the Andrelândia Nappe
dc.relation.referencesensystem: an Ediacaran western Gondwana collage,
dc.relation.referencesensouth of São Francisco craton. Journal of South
dc.relation.referencesenAmerican Earth Sciences, 32, 393–406. DOI: 10.1016/j.jsames.2011.02.006
dc.relation.referencesenColeman, R. G. (1977). Emplacement and metamorphism
dc.relation.referencesenof ophiolites. Rend. Soc. Ital. Mineral.
dc.relation.referencesenPetrol., 33 (1): 161–190.
dc.relation.referencesenErshov, A. V., Brunet, M. –F., Nikishin, A. M., Bolotov,
dc.relation.referencesenS. N., Nazarevich, B. P. & Korotaev, M. V. (2003). Northern Caucasus basin: Thermal history
dc.relation.referencesenand synthesis of subsidence models. Sedimentary
dc.relation.referencesenGeology, 156, 95–118, doi: 10.1016/S0037–0738(02)00284–1
dc.relation.referencesenGarver, J. I., Royce, P. R. & Smick, T. A. (1996).
dc.relation.referencesenChromium and nickel in shale of the Taconic
dc.relation.referencesenforeland: a case study for the provenance of fine–
dc.relation.referencesengained sediments with an ultramafic source. Journal of Sedimentary Research, 66, 100-106. https://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
dc.relation.referencesenGill, James. (1981). Orogenic Andesites and Plate
dc.relation.referencesenTectonics. Springer. 10.1007/978–3–642–68012–0
dc.relation.referencesenHayashi, K. I., Fujisawa, H., Holland, H. D. &
dc.relation.referencesenOhmoto, H. (1997). Geochemistry of ~1.9 Ga
dc.relation.referencesenSedimentary Rocks from Northeastern Labrador,
dc.relation.referencesenCanada. Geochimica et Cosmochimica Acta,61(19), 4115–4137. doi:10.1016/s0016–7037(97)00214–7
dc.relation.referencesenHiroaki, Ishiga & Kaori, Dozen. (1997). Geochemical
dc.relation.referencesenindications of provenance change as recorded in
dc.relation.referencesenMiocene shales: opening of the Japan Sea, San'in
dc.relation.referencesenregion, southwest Japan. Marine Geology, 144(1–3), 211–228. https://doi.org/10.1016/S0025–3227(97)00104–7
dc.relation.referencesenHolland H. D. (1984). The chemical evolution of
dc.relation.referencesenatmosphere and oceans. Princeton Univ. Press, Princeton N.J.
dc.relation.referencesenIrvine, T. N. & Baragar, W. R. A. (1971). Aguide to
dc.relation.referencesenthe chemical classification of the common
dc.relation.referencesenvolcanic rocks. Canadian Journal of Earth
dc.relation.referencesenSciences, 8(5), 523–548. https://doi.org/10.1139/e71–055
dc.relation.referencesenJ. Barry Maynard, Renzo Valloni & Ho–Shing Yu.(1982). Composition of modern deep–sea sands
dc.relation.referencesenfrom arc–related basins. Geological Society,
dc.relation.referencesenLondon, Special Publications, 10, 551–561. https://doi.org/10.1144/GSL.SP.1982.010.01.36
dc.relation.referencesenJ. Brendan Murphy. (2000). Tectonic influence on
dc.relation.referencesensedimentation along the southern flank of the late
dc.relation.referencesenPaleozoic Magdalen basin in the Canadian
dc.relation.referencesenAppalachians: Geochemical and isotopic
dc.relation.referencesenconstraints on the Horton Group in the St. Marys
dc.relation.referencesenbasin, Nova Scotia GSA Bulletin, 112(7), 997–1011. https://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
dc.relation.referencesenKalsbeek, F. & Frei, Robert. (2010). Geochemistry of
dc.relation.referencesenPrecambrian sedimentary rocks used to solve
dc.relation.referencesenstratigraphical problems: An example from the
dc.relation.referencesenNeoproterozoic Volta basin, Ghana. In: Precambrian
dc.relation.referencesenResearch, 176 (1–4), 65–76. https://doi.org/10.1016/j.precamres.2009.10.004
dc.relation.referencesenKent C. Condie. (1997). Plate Tectonics and Crustal
dc.relation.referencesenEvolution (Fourth Edition). Great Britain.
dc.relation.referencesenButterworth–Heinemann. https://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
dc.relation.referencesenKhain, V. E. (1950). Geotectonic development of the
dc.relation.referencesensouth–eastern Caucasus.
dc.relation.referencesenKhain, V. E. (1994). Geology of the Northern Eurasia
dc.relation.referencesen(USSR). Second Part of the Geology of the USSR.
dc.relation.referencesenPhanerozoic Fold Belts and Young Platforms.
dc.relation.referencesenGebru¨der Borntraeger, Berlin.
dc.relation.referencesenLe Maitre, R. W., Streckeisen, A., Zanettin, B., Le
dc.relation.referencesenBas, M. J., Bonin, B., Bateman … Woolley, A. R. (2002). Igneous Rocks: A Classifi cation and
dc.relation.referencesenGlossary of Terms, Recommenda–tions of the
dc.relation.referencesenInternational Union of Geological Sciences,
dc.relation.referencesenSubcommission of the Systematics of Igneous
dc.relation.referencesenRocks. Cambridge, UK: Cambridge University
dc.relation.referencesenPress. https://doi.org/10.1017/CBO9780511535581
dc.relation.referencesenLe Bas, M. J., Le Maitre, R. W., Streckeisen A. &
dc.relation.referencesenZanettin B. (1986). A chemical classifi cation of
dc.relation.referencesenvolcanic rocks based on the total alkali–silica
dc.relation.referencesendiagram. Journal of Petrology, 27, 745–750.
dc.relation.referencesenhttps://doi.org/10.1093/petrology/27.3.745
dc.relation.referencesenMarie–Françoise Brunet, Maxim V. Korotaev, Andrei
dc.relation.referencesenV. Ershov & Anatoly M. Nikishin. (2003). The
dc.relation.referencesenSouth Caspian Basin: a review of its evolution
dc.relation.referencesenfrom subsidence modelling. Sedimentary
dc.relation.referencesenGeology, 156, 119–148. https://doi.org/10.1016/S0037–0738(02)00285–3
dc.relation.referencesenMilanovsky, E. E. (1991). Geology of the USSR. Part 3 Moscow Univ. Press, Moscow.
dc.relation.referencesenMüller, D. & Groves, D. I. (2019). Potassic igneous
dc.relation.referencesenrocks and associated gold–copper mineralization (5th ed.). Mineral Resource Reviews. Springer–
dc.relation.referencesenVerlag Heidelberg. 10.1007/BFb0017712
dc.relation.referencesenP. Huntsman-Mapila, S. Ringrose, A. W. Mackay,
dc.relation.referencesenW. S. Downey, M. Modisi, S. H. Coetzee, Jean-
dc.relation.referencesenJacques Tiercelin, A. B. Kampunzu & C. Vanderpost. (2006). Use of the geochemical and
dc.relation.referencesenbiological sedimentary record in establishing
dc.relation.referencesenpalaeoenvironments and climate change in the
dc.relation.referencesenLake Ngami basin. NW Botswana, 148(1), 51–64. https://doi.org/10.1016/j.quaint.2005.11.029
dc.relation.referencesenRoser, B. P. & Korsch, R. J. (1986). Determination of
dc.relation.referencesentectonic setting sandstone–mudstone suites using
dc.relation.referencesenSiO2 content and K2O/Na2O ratio. Journal of
dc.relation.referencesenGeology, 94(5), 635–650.
dc.relation.referencesenRoser, B. P. & Korsch, R. J. (1988). Provenance
dc.relation.referencesensignatures of sandstone–mudstone suites determined
dc.relation.referencesenusing discriminant function analysis of major–
dc.relation.referencesenelement data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009–2541(88)90010–1
dc.relation.referencesenRudnick, R. L. & Fountain, D. M. (1995). Nature and
dc.relation.referencesencomposition of the continental crust – a lower
dc.relation.referencesencrustal perspective. Reviews in Geophysics, 33, 267–309. https://doi.org/10.1029/95RG01302
dc.relation.referencesenRudnick, R. L. & Gao, S. (2003). Composition of the
dc.relation.referencesenContinental Crust. The Crust: Treatise on Geochemistry,
dc.relation.referencesenElsevier–Pergamum, Oxford. http://dx.doi.org/10.1016/b0–08–043751–6/03016–4
dc.relation.referencesenRustamov M. I. (2005). South Caspian Basin ‒ geodynimc
dc.relation.referencesenevents and processes. Baku: Nafta–Press.
dc.relation.referencesenRustamov, M. I. (2008). Geodynamics and magmatism
dc.relation.referencesenof the Caspian–Caucasian segment of the
dc.relation.referencesenMediterranean belt in the Phanerozoic (Abstract
dc.relation.referencesenof science doctor thesis … on doctor science in
dc.relation.referencesenEarth Sciences). 07.05.2008. Institute of Geology
dc.relation.referencesenand Geophysics, Azerbaijan National Academy of
dc.relation.referencesenSciences, Baku.
dc.relation.referencesenRustamov M. I. (2015). Main indicators of the
dc.relation.referencesencollisional geodynamics of Zagros–Caucasian
dc.relation.referencesensegment of Mediterranean belt. Proceedings of
dc.relation.referencesenthe Azerbaijan National Academy of Sciences,
dc.relation.referencesenEarth Sciences, 1, 3–14.
dc.relation.referencesenShaw, D. M. (1968). A review of K–Rb fractionation
dc.relation.referencesentrends by covariance analysis. Geochim.
dc.relation.referencesenCosmochim. Acta, 32, 573–601. https://doi.org/10.1016/0016–7037(68)90050–1
dc.relation.referencesenShikhalibeyli, E. Sh. (1967). Geological structure and
dc.relation.referencesenhistory of the tectonic development of the eastern
dc.relation.referencesenpart of the Lesser Caucasus. Baku: Publishing
dc.relation.referencesenhouse "Academy of Sciences" USSR.
dc.relation.referencesenSugitani, K., Horiuchi, Y., Adachi, M. & Sugisaki, R.
dc.relation.referencesen(1996). Anomalously low Al2O3/TiO2 values of
dc.relation.referencesenArchaean chertsfrom the Pilbara Block, Western
dc.relation.referencesenAustralia-possible evidence of extensive
dc.relation.referencesenchemical weathering on the early earth.
dc.relation.referencesenPrecambrian Res., 80, 49–76. https://doi.org/10.1016/S0301–9268(96)00005–8
dc.relation.referencesenTaylor, S. R. & McLennan, S. M. (1985). The
dc.relation.referencesencontinental crust: its composition and evolution.
dc.relation.referencesenOxford: Blackwell. https://doi.org/10.1002/gj.3350210116
dc.relation.referencesenVerma, S. P. & Armstrong–Altrin, J. S. (2013). New
dc.relation.referencesenmulti–dimensional diagrams for tectonic discrimination
dc.relation.referencesenof siliciclastic sediments and their application
dc.relation.referencesento Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014
dc.relation.referencesenZonenshain, L. P. & Le Pichon, X. (1986). Deep basins of
dc.relation.referencesenthe Black Sea and Caspian Sea as remnants of Mesozoic
dc.relation.referencesenback–arc basins. Tectonophysics, 123, 181–211. https://doi.org/10.1016/0040–1951(86)90197–6
dc.relation.referencesenZiegler, P. A., & Cavazza, W. (Eds.). (2001).
dc.relation.referencesenMesozoic and Cenozoic evolution of the Scythian
dc.relation.referencesenPlatform –Black–Sea – Caucasus Peri–Tethys
dc.relation.referencesenMemoir 6: Peri–Tethyan Rift. Wrench Basins and
dc.relation.referencesenPassive Margins. Me´m. Mus. natn. Hist. nat., Paris.
dc.relation.urihttp://dx.doi.org/10.15863/TAS.2016.03.35.28
dc.relation.urihttps://doi.org/10.31996/mru.2018.3.13–18
dc.relation.urihttps://doi.org/10.1016/j.jsames.2007.02.003
dc.relation.urihttps://doi.org/10.1130/0091–7613(1986)14<848:CMOACG>2.0.CO;2
dc.relation.urihttps://doi.org/10.1306/D42682C5–2B26–11D7–8648000102C1865D
dc.relation.urihttps://doi.org/10.1016/S0025–3227(97)00104–7
dc.relation.urihttps://doi.org/10.1139/e71–055
dc.relation.urihttps://doi.org/10.1144/GSL.SP.1982.010.01.36
dc.relation.urihttps://doi.org/10.1130/0016–7606(2000)112<997:TIOSAT>2.0.CO;2
dc.relation.urihttps://doi.org/10.1016/j.precamres.2009.10.004
dc.relation.urihttps://doi.org/10.1016/B978–0–7506–3386–4.X5000–9
dc.relation.urihttps://doi.org/10.1017/CBO9780511535581
dc.relation.urihttps://doi.org/10.1093/petrology/27.3.745
dc.relation.urihttps://doi.org/10.1016/S0037–0738(02)00285–3
dc.relation.urihttps://doi.org/10.1016/j.quaint.2005.11.029
dc.relation.urihttps://doi.org/10.1016/0009–2541(88)90010–1
dc.relation.urihttps://doi.org/10.1029/95RG01302
dc.relation.urihttp://dx.doi.org/10.1016/b0–08–043751–6/03016–4
dc.relation.urihttps://doi.org/10.1016/0016–7037(68)90050–1
dc.relation.urihttps://doi.org/10.1016/S0301–9268(96)00005–8
dc.relation.urihttps://doi.org/10.1002/gj.3350210116
dc.relation.urihttps://doi.org/10.1016/j.chemgeo.2013.07.014
dc.relation.urihttps://doi.org/10.1016/0040–1951(86)90197–6
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2019
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2019
dc.rights.holder© Національний університет «Львівська політехніка», 2019
dc.rights.holder© Adil A. Aliyev, Orhan R. Abbasov
dc.subjectВеликий Кавказ
dc.subjectгорючі сланці
dc.subjectгеохімія порід
dc.subjectпротоліт
dc.subjectтектоніка
dc.subjectгеодинаміка
dc.subjectвулканізм
dc.subjectбасейн
dc.subjectGreat Caucasus
dc.subjectoil shale
dc.subjectbulk rock geochemistry
dc.subjectprotolith
dc.subjecttectonics
dc.subjectgeodynamics
dc.subjectvolcanism
dc.subjectbasin
dc.subject.udc550.422
dc.subject.udc552.52
dc.subject.udc551.21
dc.subject.udc551.24.05
dc.titleNature of the provenance and tectonic setting of oil shale (Middle eocene) in the Greater Caucasus southeastern plunge
dc.title.alternativeДжерела зносу та тектонічні умови формування горючих сланців (середній еоцен) південно-східного занурення Великого Кавказу
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: