Особливості алгоритмічних та програмних засобів опрацювання нечітких зображень
dc.citation.epage | 181 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп'ютерні системи та мережі | |
dc.citation.spage | 172 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Яркун, Р. І. | |
dc.contributor.author | Парамуд, Я. С. | |
dc.contributor.author | Yarkun, R. | |
dc.contributor.author | Paramud, Y. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T09:11:07Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено особливості алгоритмічних та програмних засобів опрацювання нечітких зображень. Розглянуто три фільтри: CIGaussianBlur, CIUnsharpMask та CIBlendWithAlpha Mask, які дають змогу покращити якість зображень, зменшити шуми та відтворити деталі. Початкове завдання – опрацювання нечіткості зображень. Для цього використовують фільтр CIGaussianBlur, який застосовує гауссівське розмиття до зображення. Це розмиття зменшує високочастотні шуми і надає плавність контурам об’єктів. Фільтр CIUnsharpMask застосовують для відновлення деталей зображення. Цей фільтр віднімає розмиту версію від оригінального зображення, що дає змогу виділити важливі деталі й підвищити чіткість зображення. Крайній фільтр, CIBlendWithAlphaMask, використовується для змішування двох зображень з використанням альфа-маски. Цей фільтр дає змогу контролювати прозорість та налаштовувати спосіб змішування зображень. В результаті можна досягти реалістичнішого та естетичнішого зображення. Розглянуто принципи роботи кожного з фільтрів, наведено приклади їх використання та описано отримані результати. Дослідження виявили, що застосування цих фільтрів дає змогу покращити якість нечітких зображень, знизити шуми і підвищити різкість деталей. Результати досліджень можуть бути корисними для використання з метою обробки зображень, для комп’ютерного зору та графічного дизайну. Використання описаних фільтрів може допомогти поліпшити візуальні характеристики зображень та забезпечити точнішу інтерпретацію нечітких зображень. | |
dc.description.abstract | This article examines the features of algorithmic and software tools for processing fuzzy images. The work uses three filters: CIGaussianBlur, CIUnsharpMask and CIBlendWithAlphaMask. The described filters allow you to improve image quality, reduce noise and reproduce details.The initial task is to process the blurring of images. For this, the CIGaussianBlur filter is used, which applies a Gaussian blur to the image. This blur reduces high-frequency noise and adds smoothness to the contours of objects.The second filter, CIUnsharpMask, is used to restore image details. This filter subtracts the blurred version from the original image, which allows you to highlight important details and increase the clarity of the image. The last filter, CIBlendWithAlphaMask, is used to blend two images using an alpha mask. This filter allows you to control the transparency and adjust how the images are blended. As a result, a more realistic and aesthetic image can be achieved. The article considers the principles of operation of each of the filters, gives examples of their use and describes the results obtained. Research shows that using these filters can improve the quality of blurry images, reduce noise, and sharpen details. The results of this work can be useful for use in the field of image processing, computer vision and graphic design. Using the described filters can help improve the visual characteristics of images and provide a more accurate interpretation of fuzzy data. | |
dc.format.extent | 172-181 | |
dc.format.pages | 10 | |
dc.identifier.citation | Яркун Р. І. Особливості алгоритмічних та програмних засобів опрацювання нечітких зображень / Р. І. Яркун, Я. С. Парамуд // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — Том 5. — № 1. — С. 172–181. | |
dc.identifier.citationen | Yarkun R. Features of algorithmic and software tools for framing fuzzy images / R. Yarkun, Y. Paramud // Computer Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 172–181. | |
dc.identifier.doi | doi.org/10.23939/csn2023.01.172 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111634 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп'ютерні системи та мережі, 1 (5), 2023 | |
dc.relation.ispartof | Computer Systems and Networks, 1 (5), 2023 | |
dc.relation.references | 1. Hryshko B. O., Sharov S. B. Rozrobka prohramnoho zasobu dlya obrobky tsyfrovyh zobragen. Ukrainian Journal of Educational Studies and Information Technology, Vol. 5. No. 2, June 2017, 46–49. Available at: https://journals.indexcopernicus.com/api/file/viewByFileId/171586.pdf / Accessed: 10 October 2023] | |
dc.relation.references | 2. Zorilo V. V., Karpova O. A. Algorytm vyyavlennya obrobky tsyfrovoho zobragennya filtrom Motion blur”, Informatyka ta matematychni methody v modeluvanni. Odessa National Polytechnic University, 2019, Т. 9, No. 1-2, 49–58. Available at: http://dspace.opu.ua/jspui/handle/123456789/9125 / Accessed: 10 October 2023. | |
dc.relation.references | 3. Reida O. M., Oliinyk U. V., Panchuk A. O., Synenkyi M. L. Methody polipshennia tsyfrovoho zobragennia ta vidnovlennia ioho struktury. Naukovi pratsi VNTU, 2010, No. 4. Available at: https://praci.vntu.edu.ua/index.php/praci/article/view/232/230 / Accessed: 10 October 2023] | |
dc.relation.references | 4. Paramud Y., Yarkun V. Metod rozpiznavannya symvoliv na zobragennyakh na osnovi zhortkovoii neiironnoi meregi, Transactions on Computer systems and networks, Lviv Polytechnic National University Press, 2018, No. 905. 96–105 (in Ukrainian). DOI:10.23939/csn2018.905.096. | |
dc.relation.references | 5. Jian-Feng Cai, Raymond H. Chan, Mila Nikolova, “Two-phrase approach for deblurring images corrupted by impulse plus gaussian noise”, CMLA, ENS Cachan, CNRS, PRES UniverSud 61 av. du Pr´esident Wilson, 94235 Cachan Cedex, France, Inverse Problems and Imaging, Vol. 2, No. 2, 2008, 187–204. Available at: c20ef5248c70599b6ebedbadb11756ec9311.pdf (semanticscholar.org) | |
dc.relation.references | 6. Yuhang Liu, Wenyong Dong, Dong Gong, Lei Zhang, Qinfeng Shi, “Deblurring Natural Image Using Super Gaussian Fields”, Computer School, Wuhan University, Hubei, China, School of Computer Science, The University of Adelaide, Adelaide, Australia, 2018. Available at: Deblurring Natural Image Using Super-Gaussian Fields (thecvf.com) | |
dc.relation.references | 7. Sainandan Ramakrishnan, Shubham Pachori, Aalok Gangopadhyay, Shanmuganathan Raman, “Deep Generative Filter for Motion Deblurring”, Jijabai Technological Institute, Mumbai - 4000311 Indian Institute of Technology, Gandhinagar – 3823552, 2017. Available at: Deep Generative Filter for Motion Deblurring (thecvf.com) | |
dc.relation.references | 8. Paramud Y., Borovets D., Pavych T. Computer system for converting gestures to text and audio messages // Advances in Cyber-Physical Systems, 2021, Vol. 6, No. 2, 90–97. DOI: https://doi.org/10.23939/acps2021.02.090. | |
dc.relation.references | 9. Kataieva I. U., Breus B. V. Systemnyi analiz methodiv obrobky zobragen. Cherkaskyi dergavnyi technologichnyi universitet, 2022. Available at: Eurasian Sientific Discussions 13-15.02.22.pdf (librarynmu.com) | |
dc.relation.referencesen | 1. Hryshko B. O., Sharov S. B. Rozrobka prohramnoho zasobu dlya obrobky tsyfrovyh zobragen. Ukrainian Journal of Educational Studies and Information Technology, Vol. 5. No. 2, June 2017, 46–49. Available at: https://journals.indexcopernicus.com/api/file/viewByFileId/171586.pdf, Accessed: 10 October 2023] | |
dc.relation.referencesen | 2. Zorilo V. V., Karpova O. A. Algorytm vyyavlennya obrobky tsyfrovoho zobragennya filtrom Motion blur", Informatyka ta matematychni methody v modeluvanni. Odessa National Polytechnic University, 2019, V. 9, No. 1-2, 49–58. Available at: http://dspace.opu.ua/jspui/handle/123456789/9125, Accessed: 10 October 2023. | |
dc.relation.referencesen | 3. Reida O. M., Oliinyk U. V., Panchuk A. O., Synenkyi M. L. Methody polipshennia tsyfrovoho zobragennia ta vidnovlennia ioho struktury. Naukovi pratsi VNTU, 2010, No. 4. Available at: https://praci.vntu.edu.ua/index.php/praci/article/view/232/230, Accessed: 10 October 2023] | |
dc.relation.referencesen | 4. Paramud Y., Yarkun V. Metod rozpiznavannya symvoliv na zobragennyakh na osnovi zhortkovoii neiironnoi meregi, Transactions on Computer systems and networks, Lviv Polytechnic National University Press, 2018, No. 905. 96–105 (in Ukrainian). DOI:10.23939/csn2018.905.096. | |
dc.relation.referencesen | 5. Jian-Feng Cai, Raymond H. Chan, Mila Nikolova, "Two-phrase approach for deblurring images corrupted by impulse plus gaussian noise", CMLA, ENS Cachan, CNRS, PRES UniverSud 61 av. du Pr´esident Wilson, 94235 Cachan Cedex, France, Inverse Problems and Imaging, Vol. 2, No. 2, 2008, 187–204. Available at: P.20ef5248c70599b6ebedbadb11756ec9311.pdf (semanticscholar.org) | |
dc.relation.referencesen | 6. Yuhang Liu, Wenyong Dong, Dong Gong, Lei Zhang, Qinfeng Shi, "Deblurring Natural Image Using Super Gaussian Fields", Computer School, Wuhan University, Hubei, China, School of Computer Science, The University of Adelaide, Adelaide, Australia, 2018. Available at: Deblurring Natural Image Using Super-Gaussian Fields (thecvf.com) | |
dc.relation.referencesen | 7. Sainandan Ramakrishnan, Shubham Pachori, Aalok Gangopadhyay, Shanmuganathan Raman, "Deep Generative Filter for Motion Deblurring", Jijabai Technological Institute, Mumbai - 4000311 Indian Institute of Technology, Gandhinagar – 3823552, 2017. Available at: Deep Generative Filter for Motion Deblurring (thecvf.com) | |
dc.relation.referencesen | 8. Paramud Y., Borovets D., Pavych T. Computer system for converting gestures to text and audio messages, Advances in Cyber-Physical Systems, 2021, Vol. 6, No. 2, 90–97. DOI: https://doi.org/10.23939/acps2021.02.090. | |
dc.relation.referencesen | 9. Kataieva I. U., Breus B. V. Systemnyi analiz methodiv obrobky zobragen. Cherkaskyi dergavnyi technologichnyi universitet, 2022. Available at: Eurasian Sientific Discussions 13-15.02.22.pdf (librarynmu.com) | |
dc.relation.uri | https://journals.indexcopernicus.com/api/file/viewByFileId/171586.pdf | |
dc.relation.uri | http://dspace.opu.ua/jspui/handle/123456789/9125 | |
dc.relation.uri | https://praci.vntu.edu.ua/index.php/praci/article/view/232/230 | |
dc.relation.uri | https://doi.org/10.23939/acps2021.02.090 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Яркун Р. І., Парамуд Я. С., 2023 | |
dc.subject | нечіткі зображення | |
dc.subject | алгоритмічні засоби | |
dc.subject | програмні засоби | |
dc.subject | обробка зображень | |
dc.subject | фільтри | |
dc.subject | fuzzy images | |
dc.subject | algorithmic tools | |
dc.subject | software tools | |
dc.subject | image processing | |
dc.subject | filters | |
dc.subject.udc | 004.215.2 | |
dc.title | Особливості алгоритмічних та програмних засобів опрацювання нечітких зображень | |
dc.title.alternative | Features of algorithmic and software tools for framing fuzzy images | |
dc.type | Article |
Files
License bundle
1 - 1 of 1