Метод отримання графену
dc.citation.epage | 8 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Обчислювальні проблеми електротехніки | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Біляк, Роман | |
dc.contributor.author | Biliak, Roman | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-11T09:15:09Z | |
dc.date.available | 2024-04-11T09:15:09Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Графен був вперше отриманий на початку XXI ст. Відтоді розроблено різноманітні методи для його синтезу. Ця різноманітність пояснюється природною шаровоюструктурою графіту. Велика кількість методів ґрунтується на ідеї розділення шарів графіту. Їх вважають порівняно дешевими, продуктивними та доступними практично в усіх лабораторіях. Інша група методів синтезу графену ґрунтується на концепції створення графенових листків із окремих атомів вуглецю. Ці методи технологічно складніші й потребують відповідного спеціалізованого обладнання. Завдяки широкому спектру методів синтезу графену та їх доступності дослідники з усього світу можуть проводити експерименти з цим унікальним матеріалом у різних наукових галузях. Це робить графен надзвичайно перспективним об’єктом для подальших наукових досліджень. | |
dc.description.abstract | Graphene was first obtained at the beginning of the 21st century, and since then various methods have been developed for its synthesis. This variety is explained by the natural layered structure of graphite. A large number of methods is based on the idea of separating graphite layers. They are considered relatively cheap, productive and available in almost all laboratories. Another group of graphene synthesis methods is based on the concept of creating graphene sheets from individual carbon atoms. These methods are technologically more complex and require appropriate specialized equipment. Due to the wide range of graphene synthesis methods and their availability, researchers from all over the world can conduct experiments with this unique material in various scientific fields. This makes graphene an extremely promising object for further scientific research. | |
dc.format.extent | 1-8 | |
dc.format.pages | 8 | |
dc.identifier.citation | Біляк Р. Метод отримання графену / Роман Біляк // Обчислювальні проблеми електротехніки. — Львів : Видавництво Львівської політехніки, 2023. — Том 13. — № 1. — С. 1–8. | |
dc.identifier.citationen | Biliak R. Methods of Obtaining Graphene / Roman Biliak // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 13. — No 1. — P. 1–8. | |
dc.identifier.doi | doi.org/10.23939/jcpee2023.01.001 | |
dc.identifier.issn | 2224-0977 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61715 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Обчислювальні проблеми електротехніки, 1 (13), 2023 | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 1 (13), 2023 | |
dc.relation.references | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666–669, 2004. | |
dc.relation.references | [2] A. L. Vázquez de Parga, F. Calleja, B. Borca, MCG Passeggi Jr., J. J. Hinarejos, F. Guinea, et al., “Periodically rippled graphene: : Growth and spatially resolved electronic structure”, Physical Review Letters, Vol. 100, pp. 056807, 2008. | |
dc.relation.references | [3] R. M. Obodo, I. Ahmad, and F. I. Ezema, “Introductory Chapter: Graphene and Its Applications”, Graphene and Its Applications, 1st ed., IntechOpen, Sep. 11, 2019. | |
dc.relation.references | [4] A. P. Aranga Raju, “Production and Applications of Graphene and Its Composites”, Ph. D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, 2015. | |
dc.relation.references | [5] S. S. Shams, R. Zhang, and J. Zhu, “Graphene synthesis: a Review,” Mater. Science-Poland, Vol. 33, No. 3, pp. 566–578, Sept. 2015. | |
dc.relation.references | [6] A. Adetayo and D. Runsewe, “Synthesis and Fabrication of Graphene and Graphene Oxide: A Review”, Open Journal of Composite Materials, Vol. 9, pp. 207–229, 2019. | |
dc.relation.references | [7] D. Zhan, L. Sun, ZH Ni, L. Liu, XF Fan, and Y. Wang, “Adv. Funct. Mater.”, 20, 3504, 2010. | |
dc.relation.references | [8] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, “Intercalation and Exfoliation Routes to Graphite Nanoplatelets”, Journal of Materials Chemistry, Vol. 15, pp. 974–978, 2005. | |
dc.relation.references | [9] K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, “Electrochemically exfoliated graphene as solutionprocessable, highly conductive electrodes for organic electronics”, ACS Nano, Vol. 7, No. 4, pp. 3598–3606, Apr. 2013. | |
dc.relation.references | [10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids”, ACS Nano, Vol. 3, No. 8, pp. 2367–2375, Aug. 2009. | |
dc.relation.references | [11] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat Nanotechnol, Vol. 3, No. 9, pp. 563–568, Sep. 2008. | |
dc.relation.references | [12] B. Jayasena and S. Subbiah, “A novel mechanical cleavage method for synthesizing few-layer graphenes”, Nano Express, Vol. 6, Article number: 95, Jan. 19, 2011. | |
dc.relation.references | [13] A. V. Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis, B. M. Maciejewska, N. Grobert, and D. G. Eskin, “Ultrasonic exfoliation of graphene in water: A key parameter study”, Carbon, Vol. 168, pp. 737–747, 2020. | |
dc.relation.references | [14] G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, “A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites”, Journal of Industrial and Engineering Chemistry, Vol. 21, pp. 11–25, 2015. | |
dc.relation.references | [15] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, A. Mariani, “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid”, J. Mater. Chem., Vol. 21, No. 10, pp. 3428, 2011. | |
dc.relation.references | [16] M. Choucair, P. Thordarson, J. A. Stride, “Gramscale production of graphene based on solvothermal synthesis and sonication”, Nat Nanotechnol, Vol. 4, No. 1, pp. 30–33, Jan. 2009. | |
dc.relation.references | [17] M. Terrones, “Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons”, ACS Nano, Vol. 4, No. 4, pp. 1775–1781, Apr. 2010. | |
dc.relation.references | [18] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbon”, Nature, Vol. 458, No. 7240, pp. 872–876, Apr. 16, 2009. | |
dc.relation.references | [19] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, vol. 458, no. 7240, Apr. 16, 2009. | |
dc.relation.references | [20] MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, and SS Hossain, “Synthesis of Graphene”, International Nano Letters, Vol. 6, pp. 65–83, 2016. | |
dc.relation.references | [21] S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, “Synthesis and Characterization of Graphene”, in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015. | |
dc.relation.references | [22] A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. Hosmane, “Conversion of carbon dioxide to few-layer grapheme”, Journal of Materials Chemistry, Iss. 26, 2011. | |
dc.relation.references | [23] “Schematic illustration of CVD method of graphene synthesis” (2019). https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124. | |
dc.relation.references | [24] X. Zhang, J. Qiu, J. Tan, D. Zhang, L. Wu, Y. Qiao, G. Wang, J. Wu, KWK Yeung, and X. Liu, “In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light”, Carbon, Vol. 192, pp. 209–218, June 15, 2022. | |
dc.relation.references | [25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science , Vol. 324, pp. 1312–1314, 2009. | |
dc.relation.references | [26] N. Shang, P. Papakonstantinou, and M. McMullan, “Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes”, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, 2008. | |
dc.relation.references | [27] S. Das, P. Sudhagar, YS Kang, and W. Choi, “Synthesis and Characterization of Graphene”, in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015. | |
dc.relation.references | [28] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, and H. Marchetto, “Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films”, with Sharp Edge Planes, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, November 2008. | |
dc.relation.references | [29] J. Lahiri, TS Miller, AJ Ross, L. Adamska, I.I. Oleynik, and M. Batzill, “Graphene growth and stability at nickel surfaces”, New J. Phys, Vol. 13, 2011. | |
dc.relation.references | [30] “Handbook of Crystal Growth. Thin Films and Epitaxy: Materials, Processes, and Technology”, Vol. III, Part B”, 1346 p., 2016. | |
dc.relation.references | [31] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness”, Carbon, Vol. 45, pp. 2017–2021, 2007. | |
dc.relation.references | [32] Rasool H. I., Song E. B., Allen M. J., Wassei J. K., Kaner R. B., Wang K. L., et al. “Continuity of graphene on polycrystalline copper”. Nano Lett 2010;11:251–6. | |
dc.relation.referencesen | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666–669, 2004. | |
dc.relation.referencesen | [2] A. L. Vázquez de Parga, F. Calleja, B. Borca, MCG Passeggi Jr., J. J. Hinarejos, F. Guinea, et al., "Periodically rippled graphene: : Growth and spatially resolved electronic structure", Physical Review Letters, Vol. 100, pp. 056807, 2008. | |
dc.relation.referencesen | [3] R. M. Obodo, I. Ahmad, and F. I. Ezema, "Introductory Chapter: Graphene and Its Applications", Graphene and Its Applications, 1st ed., IntechOpen, Sep. 11, 2019. | |
dc.relation.referencesen | [4] A. P. Aranga Raju, "Production and Applications of Graphene and Its Composites", Ph. D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, 2015. | |
dc.relation.referencesen | [5] S. S. Shams, R. Zhang, and J. Zhu, "Graphene synthesis: a Review," Mater. Science-Poland, Vol. 33, No. 3, pp. 566–578, Sept. 2015. | |
dc.relation.referencesen | [6] A. Adetayo and D. Runsewe, "Synthesis and Fabrication of Graphene and Graphene Oxide: A Review", Open Journal of Composite Materials, Vol. 9, pp. 207–229, 2019. | |
dc.relation.referencesen | [7] D. Zhan, L. Sun, ZH Ni, L. Liu, XF Fan, and Y. Wang, "Adv. Funct. Mater.", 20, 3504, 2010. | |
dc.relation.referencesen | [8] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, "Intercalation and Exfoliation Routes to Graphite Nanoplatelets", Journal of Materials Chemistry, Vol. 15, pp. 974–978, 2005. | |
dc.relation.referencesen | [9] K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, "Electrochemically exfoliated graphene as solutionprocessable, highly conductive electrodes for organic electronics", ACS Nano, Vol. 7, No. 4, pp. 3598–3606, Apr. 2013. | |
dc.relation.referencesen | [10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids", ACS Nano, Vol. 3, No. 8, pp. 2367–2375, Aug. 2009. | |
dc.relation.referencesen | [11] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat Nanotechnol, Vol. 3, No. 9, pp. 563–568, Sep. 2008. | |
dc.relation.referencesen | [12] B. Jayasena and S. Subbiah, "A novel mechanical cleavage method for synthesizing few-layer graphenes", Nano Express, Vol. 6, Article number: 95, Jan. 19, 2011. | |
dc.relation.referencesen | [13] A. V. Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis, B. M. Maciejewska, N. Grobert, and D. G. Eskin, "Ultrasonic exfoliation of graphene in water: A key parameter study", Carbon, Vol. 168, pp. 737–747, 2020. | |
dc.relation.referencesen | [14] G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", Journal of Industrial and Engineering Chemistry, Vol. 21, pp. 11–25, 2015. | |
dc.relation.referencesen | [15] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, A. Mariani, "High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid", J. Mater. Chem., Vol. 21, No. 10, pp. 3428, 2011. | |
dc.relation.referencesen | [16] M. Choucair, P. Thordarson, J. A. Stride, "Gramscale production of graphene based on solvothermal synthesis and sonication", Nat Nanotechnol, Vol. 4, No. 1, pp. 30–33, Jan. 2009. | |
dc.relation.referencesen | [17] M. Terrones, "Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons", ACS Nano, Vol. 4, No. 4, pp. 1775–1781, Apr. 2010. | |
dc.relation.referencesen | [18] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbon", Nature, Vol. 458, No. 7240, pp. 872–876, Apr. 16, 2009. | |
dc.relation.referencesen | [19] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature, vol. 458, no. 7240, Apr. 16, 2009. | |
dc.relation.referencesen | [20] MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, and SS Hossain, "Synthesis of Graphene", International Nano Letters, Vol. 6, pp. 65–83, 2016. | |
dc.relation.referencesen | [21] S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, "Synthesis and Characterization of Graphene", in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015. | |
dc.relation.referencesen | [22] A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. Hosmane, "Conversion of carbon dioxide to few-layer grapheme", Journal of Materials Chemistry, Iss. 26, 2011. | |
dc.relation.referencesen | [23] "Schematic illustration of CVD method of graphene synthesis" (2019). https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124. | |
dc.relation.referencesen | [24] X. Zhang, J. Qiu, J. Tan, D. Zhang, L. Wu, Y. Qiao, G. Wang, J. Wu, KWK Yeung, and X. Liu, "In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light", Carbon, Vol. 192, pp. 209–218, June 15, 2022. | |
dc.relation.referencesen | [25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science , Vol. 324, pp. 1312–1314, 2009. | |
dc.relation.referencesen | [26] N. Shang, P. Papakonstantinou, and M. McMullan, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes", Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, 2008. | |
dc.relation.referencesen | [27] S. Das, P. Sudhagar, YS Kang, and W. Choi, "Synthesis and Characterization of Graphene", in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015. | |
dc.relation.referencesen | [28] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, and H. Marchetto, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films", with Sharp Edge Planes, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, November 2008. | |
dc.relation.referencesen | [29] J. Lahiri, TS Miller, AJ Ross, L. Adamska, I.I. Oleynik, and M. Batzill, "Graphene growth and stability at nickel surfaces", New J. Phys, Vol. 13, 2011. | |
dc.relation.referencesen | [30] "Handbook of Crystal Growth. Thin Films and Epitaxy: Materials, Processes, and Technology", Vol. III, Part B", 1346 p., 2016. | |
dc.relation.referencesen | [31] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness", Carbon, Vol. 45, pp. 2017–2021, 2007. | |
dc.relation.referencesen | [32] Rasool H. I., Song E. B., Allen M. J., Wassei J. K., Kaner R. B., Wang K. L., et al. "Continuity of graphene on polycrystalline copper". Nano Lett 2010;11:251–6. | |
dc.relation.uri | https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | graphene | |
dc.subject | synthesis | |
dc.subject | intercalation | |
dc.subject | exflocculation | |
dc.subject | exfoliation | |
dc.subject | deposition | |
dc.subject | CVD | |
dc.subject | “top-down” | |
dc.subject | “bottom-up” processes | |
dc.title | Метод отримання графену | |
dc.title.alternative | Methods of Obtaining Graphene | |
dc.type | Article |
Files
License bundle
1 - 1 of 1