Метод отримання графену

dc.citation.epage8
dc.citation.issue1
dc.citation.journalTitleОбчислювальні проблеми електротехніки
dc.citation.spage1
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБіляк, Роман
dc.contributor.authorBiliak, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-11T09:15:09Z
dc.date.available2024-04-11T09:15:09Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractГрафен був вперше отриманий на початку XXI ст. Відтоді розроблено різноманітні методи для його синтезу. Ця різноманітність пояснюється природною шаровоюструктурою графіту. Велика кількість методів ґрунтується на ідеї розділення шарів графіту. Їх вважають порівняно дешевими, продуктивними та доступними практично в усіх лабораторіях. Інша група методів синтезу графену ґрунтується на концепції створення графенових листків із окремих атомів вуглецю. Ці методи технологічно складніші й потребують відповідного спеціалізованого обладнання. Завдяки широкому спектру методів синтезу графену та їх доступності дослідники з усього світу можуть проводити експерименти з цим унікальним матеріалом у різних наукових галузях. Це робить графен надзвичайно перспективним об’єктом для подальших наукових досліджень.
dc.description.abstractGraphene was first obtained at the beginning of the 21st century, and since then various methods have been developed for its synthesis. This variety is explained by the natural layered structure of graphite. A large number of methods is based on the idea of separating graphite layers. They are considered relatively cheap, productive and available in almost all laboratories. Another group of graphene synthesis methods is based on the concept of creating graphene sheets from individual carbon atoms. These methods are technologically more complex and require appropriate specialized equipment. Due to the wide range of graphene synthesis methods and their availability, researchers from all over the world can conduct experiments with this unique material in various scientific fields. This makes graphene an extremely promising object for further scientific research.
dc.format.extent1-8
dc.format.pages8
dc.identifier.citationБіляк Р. Метод отримання графену / Роман Біляк // Обчислювальні проблеми електротехніки. — Львів : Видавництво Львівської політехніки, 2023. — Том 13. — № 1. — С. 1–8.
dc.identifier.citationenBiliak R. Methods of Obtaining Graphene / Roman Biliak // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 13. — No 1. — P. 1–8.
dc.identifier.doidoi.org/10.23939/jcpee2023.01.001
dc.identifier.issn2224-0977
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61715
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofОбчислювальні проблеми електротехніки, 1 (13), 2023
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (13), 2023
dc.relation.references[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666–669, 2004.
dc.relation.references[2] A. L. Vázquez de Parga, F. Calleja, B. Borca, MCG Passeggi Jr., J. J. Hinarejos, F. Guinea, et al., “Periodically rippled graphene: : Growth and spatially resolved electronic structure”, Physical Review Letters, Vol. 100, pp. 056807, 2008.
dc.relation.references[3] R. M. Obodo, I. Ahmad, and F. I. Ezema, “Introductory Chapter: Graphene and Its Applications”, Graphene and Its Applications, 1st ed., IntechOpen, Sep. 11, 2019.
dc.relation.references[4] A. P. Aranga Raju, “Production and Applications of Graphene and Its Composites”, Ph. D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, 2015.
dc.relation.references[5] S. S. Shams, R. Zhang, and J. Zhu, “Graphene synthesis: a Review,” Mater. Science-Poland, Vol. 33, No. 3, pp. 566–578, Sept. 2015.
dc.relation.references[6] A. Adetayo and D. Runsewe, “Synthesis and Fabrication of Graphene and Graphene Oxide: A Review”, Open Journal of Composite Materials, Vol. 9, pp. 207–229, 2019.
dc.relation.references[7] D. Zhan, L. Sun, ZH Ni, L. Liu, XF Fan, and Y. Wang, “Adv. Funct. Mater.”, 20, 3504, 2010.
dc.relation.references[8] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, “Intercalation and Exfoliation Routes to Graphite Nanoplatelets”, Journal of Materials Chemistry, Vol. 15, pp. 974–978, 2005.
dc.relation.references[9] K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, “Electrochemically exfoliated graphene as solutionprocessable, highly conductive electrodes for organic electronics”, ACS Nano, Vol. 7, No. 4, pp. 3598–3606, Apr. 2013.
dc.relation.references[10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids”, ACS Nano, Vol. 3, No. 8, pp. 2367–2375, Aug. 2009.
dc.relation.references[11] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat Nanotechnol, Vol. 3, No. 9, pp. 563–568, Sep. 2008.
dc.relation.references[12] B. Jayasena and S. Subbiah, “A novel mechanical cleavage method for synthesizing few-layer graphenes”, Nano Express, Vol. 6, Article number: 95, Jan. 19, 2011.
dc.relation.references[13] A. V. Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis, B. M. Maciejewska, N. Grobert, and D. G. Eskin, “Ultrasonic exfoliation of graphene in water: A key parameter study”, Carbon, Vol. 168, pp. 737–747, 2020.
dc.relation.references[14] G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, “A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites”, Journal of Industrial and Engineering Chemistry, Vol. 21, pp. 11–25, 2015.
dc.relation.references[15] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, A. Mariani, “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid”, J. Mater. Chem., Vol. 21, No. 10, pp. 3428, 2011.
dc.relation.references[16] M. Choucair, P. Thordarson, J. A. Stride, “Gramscale production of graphene based on solvothermal synthesis and sonication”, Nat Nanotechnol, Vol. 4, No. 1, pp. 30–33, Jan. 2009.
dc.relation.references[17] M. Terrones, “Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons”, ACS Nano, Vol. 4, No. 4, pp. 1775–1781, Apr. 2010.
dc.relation.references[18] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbon”, Nature, Vol. 458, No. 7240, pp. 872–876, Apr. 16, 2009.
dc.relation.references[19] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes”, Nature, vol. 458, no. 7240, Apr. 16, 2009.
dc.relation.references[20] MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, and SS Hossain, “Synthesis of Graphene”, International Nano Letters, Vol. 6, pp. 65–83, 2016.
dc.relation.references[21] S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, “Synthesis and Characterization of Graphene”, in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015.
dc.relation.references[22] A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. Hosmane, “Conversion of carbon dioxide to few-layer grapheme”, Journal of Materials Chemistry, Iss. 26, 2011.
dc.relation.references[23] “Schematic illustration of CVD method of graphene synthesis” (2019). https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124.
dc.relation.references[24] X. Zhang, J. Qiu, J. Tan, D. Zhang, L. Wu, Y. Qiao, G. Wang, J. Wu, KWK Yeung, and X. Liu, “In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light”, Carbon, Vol. 192, pp. 209–218, June 15, 2022.
dc.relation.references[25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science , Vol. 324, pp. 1312–1314, 2009.
dc.relation.references[26] N. Shang, P. Papakonstantinou, and M. McMullan, “Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes”, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, 2008.
dc.relation.references[27] S. Das, P. Sudhagar, YS Kang, and W. Choi, “Synthesis and Characterization of Graphene”, in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015.
dc.relation.references[28] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, and H. Marchetto, “Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films”, with Sharp Edge Planes, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, November 2008.
dc.relation.references[29] J. Lahiri, TS Miller, AJ Ross, L. Adamska, I.I. Oleynik, and M. Batzill, “Graphene growth and stability at nickel surfaces”, New J. Phys, Vol. 13, 2011.
dc.relation.references[30] “Handbook of Crystal Growth. Thin Films and Epitaxy: Materials, Processes, and Technology”, Vol. III, Part B”, 1346 p., 2016.
dc.relation.references[31] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness”, Carbon, Vol. 45, pp. 2017–2021, 2007.
dc.relation.references[32] Rasool H. I., Song E. B., Allen M. J., Wassei J. K., Kaner R. B., Wang K. L., et al. “Continuity of graphene on polycrystalline copper”. Nano Lett 2010;11:251–6.
dc.relation.referencesen[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, Vol. 306, pp. 666–669, 2004.
dc.relation.referencesen[2] A. L. Vázquez de Parga, F. Calleja, B. Borca, MCG Passeggi Jr., J. J. Hinarejos, F. Guinea, et al., "Periodically rippled graphene: : Growth and spatially resolved electronic structure", Physical Review Letters, Vol. 100, pp. 056807, 2008.
dc.relation.referencesen[3] R. M. Obodo, I. Ahmad, and F. I. Ezema, "Introductory Chapter: Graphene and Its Applications", Graphene and Its Applications, 1st ed., IntechOpen, Sep. 11, 2019.
dc.relation.referencesen[4] A. P. Aranga Raju, "Production and Applications of Graphene and Its Composites", Ph. D. dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, 2015.
dc.relation.referencesen[5] S. S. Shams, R. Zhang, and J. Zhu, "Graphene synthesis: a Review," Mater. Science-Poland, Vol. 33, No. 3, pp. 566–578, Sept. 2015.
dc.relation.referencesen[6] A. Adetayo and D. Runsewe, "Synthesis and Fabrication of Graphene and Graphene Oxide: A Review", Open Journal of Composite Materials, Vol. 9, pp. 207–229, 2019.
dc.relation.referencesen[7] D. Zhan, L. Sun, ZH Ni, L. Liu, XF Fan, and Y. Wang, "Adv. Funct. Mater.", 20, 3504, 2010.
dc.relation.referencesen[8] L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, "Intercalation and Exfoliation Routes to Graphite Nanoplatelets", Journal of Materials Chemistry, Vol. 15, pp. 974–978, 2005.
dc.relation.referencesen[9] K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, "Electrochemically exfoliated graphene as solutionprocessable, highly conductive electrodes for organic electronics", ACS Nano, Vol. 7, No. 4, pp. 3598–3606, Apr. 2013.
dc.relation.referencesen[10] J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, "One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids", ACS Nano, Vol. 3, No. 8, pp. 2367–2375, Aug. 2009.
dc.relation.referencesen[11] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite", Nat Nanotechnol, Vol. 3, No. 9, pp. 563–568, Sep. 2008.
dc.relation.referencesen[12] B. Jayasena and S. Subbiah, "A novel mechanical cleavage method for synthesizing few-layer graphenes", Nano Express, Vol. 6, Article number: 95, Jan. 19, 2011.
dc.relation.referencesen[13] A. V. Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis, B. M. Maciejewska, N. Grobert, and D. G. Eskin, "Ultrasonic exfoliation of graphene in water: A key parameter study", Carbon, Vol. 168, pp. 737–747, 2020.
dc.relation.referencesen[14] G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, "A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites", Journal of Industrial and Engineering Chemistry, Vol. 21, pp. 11–25, 2015.
dc.relation.referencesen[15] D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, A. Mariani, "High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid", J. Mater. Chem., Vol. 21, No. 10, pp. 3428, 2011.
dc.relation.referencesen[16] M. Choucair, P. Thordarson, J. A. Stride, "Gramscale production of graphene based on solvothermal synthesis and sonication", Nat Nanotechnol, Vol. 4, No. 1, pp. 30–33, Jan. 2009.
dc.relation.referencesen[17] M. Terrones, "Sharpening the Chemical Scissors to Unzip Carbon Nanotubes: Crystalline Graphene Nanoribbons", ACS Nano, Vol. 4, No. 4, pp. 1775–1781, Apr. 2010.
dc.relation.referencesen[18] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbon", Nature, Vol. 458, No. 7240, pp. 872–876, Apr. 16, 2009.
dc.relation.referencesen[19] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature, vol. 458, no. 7240, Apr. 16, 2009.
dc.relation.referencesen[20] MSA Bhuyan, MN Uddin, MM Islam, FA Bipasha, and SS Hossain, "Synthesis of Graphene", International Nano Letters, Vol. 6, pp. 65–83, 2016.
dc.relation.referencesen[21] S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, "Synthesis and Characterization of Graphene", in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015.
dc.relation.referencesen[22] A. Chakrabarti, J. Lu, J. C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. Hosmane, "Conversion of carbon dioxide to few-layer grapheme", Journal of Materials Chemistry, Iss. 26, 2011.
dc.relation.referencesen[23] "Schematic illustration of CVD method of graphene synthesis" (2019). https://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124.
dc.relation.referencesen[24] X. Zhang, J. Qiu, J. Tan, D. Zhang, L. Wu, Y. Qiao, G. Wang, J. Wu, KWK Yeung, and X. Liu, "In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light", Carbon, Vol. 192, pp. 209–218, June 15, 2022.
dc.relation.referencesen[25] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science , Vol. 324, pp. 1312–1314, 2009.
dc.relation.referencesen[26] N. Shang, P. Papakonstantinou, and M. McMullan, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes", Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, 2008.
dc.relation.referencesen[27] S. Das, P. Sudhagar, YS Kang, and W. Choi, "Synthesis and Characterization of Graphene", in Carbon Nanomaterials for Advanced Energy Systems, W. Lu, J. Baek, and L. Dai, Eds., John Wiley & Sons, Inc., Hoboken, NJ, pp. 85–131, 2015.
dc.relation.referencesen[28] N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, and H. Marchetto, "Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films", with Sharp Edge Planes, Advanced Functional Materials, Vol. 18, No. 21, pp. 3506–3514, November 2008.
dc.relation.referencesen[29] J. Lahiri, TS Miller, AJ Ross, L. Adamska, I.I. Oleynik, and M. Batzill, "Graphene growth and stability at nickel surfaces", New J. Phys, Vol. 13, 2011.
dc.relation.referencesen[30] "Handbook of Crystal Growth. Thin Films and Epitaxy: Materials, Processes, and Technology", Vol. III, Part B", 1346 p., 2016.
dc.relation.referencesen[31] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical Vapor Deposition of Thin Graphite Films of Nanometer Thickness", Carbon, Vol. 45, pp. 2017–2021, 2007.
dc.relation.referencesen[32] Rasool H. I., Song E. B., Allen M. J., Wassei J. K., Kaner R. B., Wang K. L., et al. "Continuity of graphene on polycrystalline copper". Nano Lett 2010;11:251–6.
dc.relation.urihttps://www.researchgate.net/figure/Schematic-illustration-of-CVD-method-ofgraphene-synthesis_fig1_334610124
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectgraphene
dc.subjectsynthesis
dc.subjectintercalation
dc.subjectexflocculation
dc.subjectexfoliation
dc.subjectdeposition
dc.subjectCVD
dc.subject“top-down”
dc.subject“bottom-up” processes
dc.titleМетод отримання графену
dc.title.alternativeMethods of Obtaining Graphene
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v13n1_Biliak_R-Methods_of_Obtaining_Graphene_1-8.pdf
Size:
618.36 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v13n1_Biliak_R-Methods_of_Obtaining_Graphene_1-8__COVER.png
Size:
1.4 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: