Lactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates. A Review

dc.citation.epage169
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage157
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorKiiv, Dmytro
dc.contributor.authorVasylyuk, Sofiya
dc.contributor.authorLubenets, Vira
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:54Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractЦя стаття містить вичерпну інформацію про групи бактеріальних продуцентів молочної кислоти, що мають високу метаболічну активність і можуть застосовуватись у промисловому виробництві. Крім цього, здійснено огляд найпоширеніших методів ферментації, а саме: періодична, періодична з підживленням, безперервна і повторна, та дешевих джерел карбону: крохмале– та целюлозовмісні промислові та харчові відходи.
dc.description.abstractThe article contains comprehensive information on groups of bacteria producing lactic acid, which have high metabolic activity and can be used in industrial production. In addition, an overview of the most common fermentation methods (batch, continuous, multiple), as well as cheap carbon sources: starch and cellulose-containing, industrial and food waste is provided.
dc.format.extent157-169
dc.format.pages13
dc.identifier.citationKiiv D. Lactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates. A Review / Dmytro Kiiv, Sofiya Vasylyuk, Vira Lubenets // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 157–169.
dc.identifier.citationenKiiv D. Lactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates. A Review / Dmytro Kiiv, Sofiya Vasylyuk, Vira Lubenets // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 157–169.
dc.identifier.doidoi.org/10.23939/chcht18.02.157
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111795
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Organic acid market. Market Research & Business Intelligence. Future Market Insights. https://www.futuremarketinsights.com/reports/global-organic-acids-market (accessed 2023-11-27).
dc.relation.references[2] Lactic Acid Market Size, Share and Trends Report, 2030. Market Research Reports & Consulting. Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market (date of accessed 2023-11-27).
dc.relation.references[3] Lap, M. O.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621–626. https://doi.org/10.23939/chcht15.04.621
dc.relation.references[4] Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, Kh.; Bratychak, M.; Chopyk N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191–197. https://doi.org/10.23939/chcht15.02.191
dc.relation.references[5] Liu, L.; Jin, T.; Finkenstadt, V.; Liu, C-K.; Cooke, P.; Coffin, D., Hicks, K.; Samer, Ch. Antimicrobial Packaging Materials from Poly(Lactic Acid) Incorporated with Pectin-Nisaplin® Microparticles. Chem. Chem. Technol. 2009, 3, 221–230. https://doi.org/10.23939/chcht03.03.221
dc.relation.references[6] Lactic acid. Application, properties and characteristics. ChemElement. Store of mineral fertilizers and chemical raw materials. https://him-element.com.ua/uk/news/138 (accessed 2023-11-27).
dc.relation.references[7] Rybachuk, V. Lactic acid. Pharmaceutical encyclopedia. https://www.pharmencyclopedia.com.ua/arti-cle/7010/kislota-molochna (accessed 2023-11-27).
dc.relation.references[8] Lactic acid. LOST Ltd. Ivano-Frankivsk. https://lost-ltd.if.ua/molochna-kyslota/ (accessed 2023-11-27).
dc.relation.references[9] Lactic acid 40% 100 ml. Basalt - Animal Health. https://basalt.net.ua/ua/lactic-acid-100ml/ (accessed 2023-11-27).
dc.relation.references[10] Karande, R. D.; Abitha, V. K.; Rane, A. V.; Mishra R. K. Preparation of polylactide from synthesized lactic acid and effect of reaction parameters on conversion. Journal of Materials Science and Engineering with Advanced Technology 2016, 12, 1–37. http://dx.doi.org/10.18642/jmseat_7100121546
dc.relation.references[11] Komesu, A.; Oliveira, J.A.R.; Martins, L.H.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. Bioresources 2017, 12, 4364–4383. https://doi.org/10.15376/biores.12.2.4364-4383
dc.relation.references[12] Vaidya, A.N.; Pandey, R.A.; Mudliar, S.; Kumar, M.S.; Chakrabarty, T.; Devotta, S. Production and Recovery of Lactic Acid for Polylactide—An Overview. Crit. Rev. Environ. Sci. Technol. 2005, 35, 429–467. https://doi.org/10.1080/10643380590966181
dc.relation.references[13] Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent Advances in Lactic Acid Production by Microbial Fermentation Processes. Biotechnol. Adv. 2013, 31, 877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002
dc.relation.references[14] Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative Production of Lactic Acid from Renewable Materials: Recent Achievements, Prospects, and Limits. J. Biosci. Bioeng. 2015, 119, 10–18. https://doi.org/10.1016/j.jbiosc.2014.06.003
dc.relation.references[15] Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological Production of Enantiomerically Pure D-Lactic Acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423–9437. https://doi.org/10.1007/s00253-016-7843-7
dc.relation.references[16] Krishna, B.S; Saibaba, N.; Gantala, S.S.N.; Tarun, B.; Gopinadh, R. Industrial Production of Lactic Acid and Its Applications. Int. J. Biotechnol. Res. 2018, 1, 42–54. https://www.researchgate.net/publication/330292057_Industrial_production_of_lactic_acid_and_its_applications. (accessed 2023-11-27). (accessed 2023-11-27).
dc.relation.references[17] Wee, Y.-J.; Kim, J.-N.; Ryu, H.-W. Biotechnological Production of Lactic Acid and Its Recent Applications Food Technol. Food Technol. Biotechnol. 2006, 44, 163–172. https://api.semanticscholar.org/CorpusID:28612386 (accessed 2023-11-27)
dc.relation.references[18] Bondar, I.V.; Hulyayev, V.M. Promyslova mikrobiolohiya Kharchova i ahrobiotekhnolohiya; DDTU: Dniprodzerzhynsʹk, 2004. [in UKrainian].
dc.relation.references[19] Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. [Online] 2020, 2020, 3419034. https://doi.org/10.1155/2020/3419034 Published online: June 18, 2020. https://www.hindawi.com/journals/bmri/2020/3419034/ (accessed 2023-11-27)
dc.relation.references[20] Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus Subtilis MUR1. Bioresour. Technol. 2012, 121, 105–110. https://doi.org/10.1016/j.biortech.2012.06.108
dc.relation.references[21] Payot, T.; Chemaly, Z.; Fick, M. Lactic Acid Production by Bacillus Coagulans-Kinetic Studies and Optimization of Culture Medium for Batch and Continuous Fermentations. Enzyme Microb. Technol. 1999, 24, 191–199. https://doi.org/10.1016/S0141-0229(98)00098-2
dc.relation.references[22] Castells, A.; Leon, A.; Sosa, D.; Cadena, I.; Ramírez, D.; Serrano, L.; Larrea, F.; Almeida-Streitwieser, D.; Alvarez-Barreto, J. Evaluation of Lactic Acid Production by Different Bacillus Subtilis Strains Isolated From Theobroma Cacao Crops in Ecuador. Chem. Eng. Trans. 2022, 93, 55–60. https://doi.org/10.3303/CET2293010
dc.relation.references[23] Liu, H.; Kang, J.; Qi, Q.; Chen, G. Production of Lactate in Escherichia Coli by Redox Regulation Genetically and Physiologically. Appl. Biochem. Biotechnol. 2011, 164, 162–169. https://doi.org/10.1007/s12010-010-9123-9
dc.relation.references[24] Chang, D.-E.; Jung, H.-C.; Rhee, J.-S.; Pan, J.-G. Homofermentative Production of D-Orl-Lactate in Metabolically Engineered Escherichia Coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384–1389. https://doi.org/10.1128/AEM.65.4.1384-1389.1999
dc.relation.references[25] Okino, S.; Suda, M.; Fujikura, K.; Inui, M.; Yukawa, H. Production of D-Lactic Acid by Corynebacterium Glutamicum under Oxygen Deprivation. Appl. Microbiol. Biotechnol. 2008, 78, 449–454. https://doi.org/10.1007/s00253-007-1336-7
dc.relation.references[26] Björkroth, J.; Koort, J. Lactic Acid Bacteria: Taxonomy and Biodiversity. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier, 2011; pp. 45–48. https://doi.org/10.1016/B978-0-12-374407-4.00255-7
dc.relation.references[27] Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Elsevier, 2016; pp. 501–508. https://doi.org/10.1016/b978-0-12-384947-2.00414-1
dc.relation.references[28] Chervetsova, V. Mikrobiolohiya: konspekt lektsiy; Vydavnytstvo Lʹvivsʹkoyi politekhniky: Lʹviv, 2016 [in Ukrainian].
dc.relation.references[29] Abedi, E.; Lactic Acid Production - Producing Microorganisms and Substrates Sources - State of Art. Heliyon 2020, 6, e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
dc.relation.references[30] UK Standards for Microbiology Investigations Identification of Bacillus Species. Bacteriology – Identification Issued by the Standards Unit, Microbiology Services, PHE, 2014. https://assets.publishing.service.gov.uk/media/5ac4e7cc40f0b60a4e1b0e7a/ID_9i3.1.pdf (accessed 2023-11-27)
dc.relation.references[31] Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia Coli. Nat. Rev. Microbiol. 2010, 8, 207–217. https://doi.org/10.1038/nrmicro2298
dc.relation.references[32] Förster, A.H.; Gescher, J. Metabolic Engineering of Escherichia Coli for Production of Mixed-Acid Fermentation End Products. Front. Bioeng. Biotechnol. [Online] 2014, 2, 16. https://doi.org/10.3389/fbioe.2014.00016
dc.relation.references[33] Wolfe, A.J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12–50. https://doi.org/10.1128/mmbr.69.1.12-50.2005
dc.relation.references[34] Gopinath, V.; Nampoothiri, K.M. Corynebacterium glutamicum. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier, 2014; pp. 504–517. https://doi.org/10.1016/B978-0-12-384730-0.00076-8
dc.relation.references[35] Lee, J.A.; Ahn, J.H.; Lee, S.Y. Organic Acids: Succinic and Malic Acids. In Comprehensive Biotechnology, 3nd ed.; Elsevier, 2019; pp. 172–187. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
dc.relation.references[36] Inui, M.; Murakami, S.; Okino, S.; Kawaguchi, H.; Vertès, AA; Yukawa, H. Metabolic Analysis of Corynebacterium Glutamicum During Lactate and Succinate Productions Under Oxygen Deprivation Conditions. J. Mol. Microbiol. Biotechnol. 2004, 7, 182–196. https://doi.org/10.1159/000079827
dc.relation.references[37] de la Torre, I.; Ladero, M.; Santos, V.E. D-Lactic Acid Production From Orange Waste Enzymatic Hydrolysates With L. Delbrueckii Cells in Growing and Resting State. Ind. Crops. Prod. 2020, 146, 112176. https://doi.org/10.1016/j.indcrop.2020.112176
dc.relation.references[38] Kotzamanidis, Ch.; Roukas, T.; Skaracis, G.N. Optimization of Lactic Acid Production from Beet Molasses by Lactobacillus Delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 2002, 18, 441–448. https://doi.org/10.1023/a:1015523126741.
dc.relation.references[39] Tian, X.; Liu, X.; Zhang, Y.; Chen, Y.; Hang, H.; Chu, J.; Zhuang, Y. Metabolic Engineering Coupled With Adaptive Evolution Strategies for the Efficient Production of High-Quality L-Lactic Acid by Lactobacillus Paracasei. Bioresour. Technol. 2021, 323, 124549. https://doi.org/10.1016/j.biortech.2020.124549
dc.relation.references[40] Li, Z.; Lu, J.; Zhao, L.; Xiao, K.; Tan, T. Improvement of L-Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus Rhamnosus. Appl. Biochem. Biotechnol. 2010, 162, 1762–1767 https://doi.org/10.1007/s12010-010-8957-5
dc.relation.references[41] Shi, S.; Kang, L.; Lee, Y.Y. Production of Lactic Acid from the Mixture of Softwood Pre-Hydrolysate and Paper Mill Sludge by Simultaneous Saccharification and Fermentation. Appl. Biochem. Biotechnol. 2015, 175, 2741–2754. https://doi.org/10.1007/s12010-014-1451-8
dc.relation.references[42] Liu, P.; Zheng, Z.; Xu, Q.; Qian, Z.; Liu, J.; Ouyang, J. Valorization of Dairy Waste for Enhanced D-Lactic Acid Production at Low Cost. Process Biochem. 2018, 71, 18–22. https://doi.org/10.1016/j.procbio.2018.05.014
dc.relation.references[43] Kim, H. O.; Wee, Y. J.; Kim, J. N.; Yun, J. S.; Ryu, H. W. Production of Lactic Acid From Cheese Whey by Batch and Repeated Batch Cultures of Lactobacillus Sp. RKY2. Appl. Biochem. Biotechnol. 2006, 131, 694–704. https://doi.org/10.1385/ABAB:131:1:694
dc.relation.references[44] Büyükkileci, A.O.; Harsa, S. Batch Production of L(+) Lactic Acid From Whey by Lactobacillus Casei(NRRL B-441). J. Chem. Technol. Biotechnol. 2004, 79, 1036–1040. https://doi.org/10.1002/jctb.1094
dc.relation.references[45] de Oliveira, J.; Porto de Souza Vandenberghe, L.; Zwiercheczewski de Oliveira, P.; Murawski de Mello, A. F.; Rodrigues, C.; Singh Nigam, P.; Faraco, V.; Soccol, C.R. Bioconversion of Potato-Processing Wastes Into an Industrially-Important Chemical Lactic Acid. Bioresour. Technol. Rep. 2021, 15, 100698. https://doi.org/10.1016/j.biteb.2021.100698
dc.relation.references[46] Shi, Z.; Wei, P.; Zhu, X.; Cai, J.; Huang, L.; Xu, Z. Efficient Production of L-Lactic Acid From Hydrolysate of Jerusalem Artichoke With Immobilized Cells of Lactococcus Lactis in Fibrous Bed Bioreactors. Enzyme Microb. Technol. 2012, 51, 263–268. https://doi.org/10.1016/j.enzmictec.2012.07.007
dc.relation.references[47] Oh, H.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Lactic Acid Production through Cell-Recycle Repeated-Batch Bioreactor. Appl. Biochem. Biotechnol. 2003, 107, 603–614. https://doi.org/10.1385/ABAB:107:1-3:603
dc.relation.references[48] Wee, Y.-J.; Kim, J.-N.; Yun, J.-S.; Ryu, H.-W. Utilization of Sugar Molasses for Economical L(+)-Lactic Acid Production by Batch Fermentation of Enterococcus Faecalis. Enzyme Microb. Technol. 2004, 35, 568–573. https://doi.org/10.1016/j.enzmictec.2004.08.008
dc.relation.references[49] Cox, R.; Narisetty, V.; Nagarajan, S.; Agrawal, D.; Ranade, V.V.; Salonitis, K.; Venus, J.; Kumar, V. High-Level Fermentative Production of Lactic Acid From Bread Waste Under Non-Sterile Conditions With a Circular Biorefining Approach and Zero Waste Discharge. Fuel 2022, 313, 122976. https://doi.org/10.1016/j.fuel.2021.122976
dc.relation.references[50] Xu, K.; Xu, P. Efficient Production of L-Lactic Acid Using Co-Feeding Strategy Based on Cane Molasses/Glucose Carbon Sources. Bioresour. Technol. 2014, 153, 23–29. https://doi.org/10.1016/j.biortech.2013.11.057
dc.relation.references[51] Budhavaram, N.K.; Fan, Z. Production of Lactic Acid from Paper Sludge Using Acid-Tolerant, Thermophilic Bacillus Coagulan Strains. Bioresour. Technol. 2009, 100, 5966–5972. https://doi.org/10.1016/j.biortech.2009.01.080
dc.relation.references[52] Ye, L.; Zhou, X.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Highly Efficient Production of L-Lactic Acid From Xylose by Newly Isolated Bacillus Coagulans C106. Bioresour. Technol. 2013, 132, 38–44. https://doi.org/10.1016/j.biortech.2013.01.011
dc.relation.references[53] Meng, Y.; Xue, Y.; Yu, B.; Gao, C.; Ma, Y. Efficient Production of L-Lactic Acid With High Optical Purity by Alkaliphilic Bacillus Sp. WL-S20. Bioresour. Technol. 2012, 116, 334–339. https://doi.org/10.1016/j.biortech.2012.03.103
dc.relation.references[54] Tian, K.; Chen, X.; Shen, W.; Prior, B.A.; Shi G.; Singh S.; Wang Z. High-Efficiency Conversion of Glycerol to D-Lactic Acid with Metabolically Engineered Escherichia Coli. Afr. J. Biotechnol. 2012, 11, 4860–4867. https://doi.org/10.5897/ajb11.3464
dc.relation.references[55] Wang, Y.; Li, K.; Huang, F.; Wang, J.; Zhao, J.; Zhao, X.; Garza, E.; Manow, R.; Grayburn, S.; Zhou, S. Engineering and Adaptive Evolution of Escherichia Coli W for L-Lactic Acid Fermentation From Molasses and Corn Steep Liquor Without Additional Nutrients. Bioresour. Technol. 2013, 148, 394–400. https://doi.org/10.1016/j.biortech.2013.08.114
dc.relation.references[56] Liu, Y.; Gao, W.; Zhao, X.; Wang, J.; Garza, E.; Manow, R.; Zhou, S. Pilot Scale Demonstration of D -Lactic Acid Fermentation Facilitated by Ca(OH)2 Using a Metabolically Engineered Escherichia Coli. Bioresour. Technol. 2014, 169, 559–565. https://doi.org/10.1016/j.biortech.2014.06.056
dc.relation.references[57] Wang, Y.; Meng, H.; Cai, D.; Wang, B.; Qin, P.; Wang, Z.; Tan, T. Improvement of L-Lactic Acid Productivity From Sweet Sorghum Juice by Repeated Batch Fermentation Coupled With Membrane Separation. Bioresour. Technol. 2016, 211, 291–297. https://doi.org/10.1016/j.biortech.2016.03.095
dc.relation.references[58] Liang, S.; McDonald, A.G.; Coats, E.R. Lactic Acid Production From Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manage. 2015, 45, 51–56. https://doi.org/10.1016/j.wasman.2015.02.004
dc.relation.references[59] Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H. Enhanced Lactic Acid Production from the Anaerobic Co-Digestion of Swine Manure with Apple or Potato Waste via Ratio Adjustment. Bioresour. Technol. 2020, 318, 124237. https://doi.org/10.1016/j.biortech.2020.124237
dc.relation.references[60] Xiaodong, W.; Xuan, G.; Rakshit, S.K. Direct Fermentative Production of Lactic Acid on Cassava and Other Starch Substrates. Biotechnol. Lett. 1997, 19, 841–843. https://doi.org/10.1023/A:1018321200591
dc.relation.references[61] Reddy, G.; Altaf, Md.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic Bacterial Lactic Acid Fermentation - a Review. Biotechnol. Adv. 2008, 26, 22–34. https://doi.org/10.1016/j.biotechadv.2007.07.004
dc.relation.references[62] Kerketta, A.; Panda, T.C.; Ray, R.C.; Behera, S.S. Amylolytic Lactic Acid Bacteria: Cell Factories for Direct Lactic Acid Production from Biomass by Simultaneous Saccharification and Fermentation. In Lactic Acid Bacteria as Cell Factories; Elsevier, 2023; pp. 199–217. https://doi.org/10.1016/B978-0-323-91930-2.00003-1
dc.relation.references[63] Cui, F.; Li, Y.; Wan, C. Lactic Acid Production From Corn Stover Using Mixed Cultures of Lactobacillus Rhamnosus and Lactobacillus Brevis. Bioresour. Technol. 2011, 102, 1831–1836. https://doi.org/10.1016/j.biortech.2010.09.063
dc.relation.references[64] Bai, Z.; Gao, Z.; Sun, J.; Wu, B.; He, B. D-Lactic Acid Production by Sporolactobacillus Inulinus YBS1-5 With Simultaneous Utilization of Cottonseed Meal and Corncob Residue. Bioresour. Technol. 2016, 207, 346–352. https://doi.org/10.1016/j.biortech.2016.02.007
dc.relation.references[65] John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Appl. Biochem. Biotechnol. 2006, 134, 263–272. https://doi.org/10.1385/ABAB:134:3:263
dc.relation.references[66] Sreenath, H.K.; Moldes, A.B.; Koegel, R.G.; Straub, R.J. Lactic Acid Production from Agricultural Residues. Biotechnol. Lett. 2001, 23, 179–184. https://doi.org/10.1023/A:1005651117831
dc.relation.references[67] Moldes, A.B.; Alonso, J.L.; Parajó, J.C. Strategies to Improve the Bioconversion of Processed Wood into Lactic Acid by Simultaneous Saccharification and Fermentation. J. Chem. Technol. Biotechnol. 2001, 76, 279–284. https://doi.org/10.1002/jctb.381
dc.relation.references[68] Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and Repeated Batch Production of L(+)-Lactic Acid by Enterococcus Faecalis RKY1 Using Wood Hydrolyzate and Corn Steep Liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431–435. https://doi.org/10.1007/s10295-006-0084-5
dc.relation.references[69] Panesar, P.; Kennedy, J.; Gandhi, D.; Bunko, K. Bioutilization of Whey for Lactic Acid Production. Food Chem. 2007, 105, 1–14. https://doi.org/10.1016/j.foodchem.2007.03.035
dc.relation.references[70] Dumbrepatil, A.; Adsul, M.; Chaudhary, S.; Khire, J.; Gokhale, D. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microbiol. 2007, 74, 333–335. https://doi.org/10.1128/aem.01595-07
dc.relation.references[71] Mladenović, D.; Pejin, J.; Kocić-Tanackov, S.; Radovanović, Ž.; Djukić-Vuković, A.; Mojović, L. Lactic Acid Production on Molasses Enriched Potato Stillage by Lactobacillus Paracasei Immobilized Onto Agro-Industrial Waste Supports. Ind. Crop. Prod. 2018, 124, 142–148. https://doi.org/10.1016/j.indcrop.2018.07.081
dc.relation.references[72] Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual Yoghurt Whey for Lactic Acid Production. Biomass Bioenergy 2010, 34, 931–938. https://doi.org/10.1016/j.biombioe.2010.01.041
dc.relation.references[73] Song, L.; Yang, D.; Liu, R.; Liu, S.; Dai, L.; Dai, X. Microbial Production of Lactic Acid From Food Waste: Latest Advances, Limits, and Perspectives. Bioresour. Technol. 2021, 126052. https://doi.org/10.1016/j.biortech.2021.126052
dc.relation.referencesen[1] Organic acid market. Market Research & Business Intelligence. Future Market Insights. https://www.futuremarketinsights.com/reports/global-organic-acids-market (accessed 2023-11-27).
dc.relation.referencesen[2] Lactic Acid Market Size, Share and Trends Report, 2030. Market Research Reports & Consulting. Grand View Research. https://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market (date of accessed 2023-11-27).
dc.relation.referencesen[3] Lap, M. O.; Kanbur, Y.; Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly(Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621–626. https://doi.org/10.23939/chcht15.04.621
dc.relation.referencesen[4] Levytskyi, V.; Katruk, D.; Masyuk, A.; Kysil, Kh.; Bratychak, M.; Chopyk N. Resistance of polylactide materials to water mediums of the various natures. Chem. Chem. Technol. 2021, 15, 191–197. https://doi.org/10.23939/chcht15.02.191
dc.relation.referencesen[5] Liu, L.; Jin, T.; Finkenstadt, V.; Liu, C-K.; Cooke, P.; Coffin, D., Hicks, K.; Samer, Ch. Antimicrobial Packaging Materials from Poly(Lactic Acid) Incorporated with Pectin-Nisaplin® Microparticles. Chem. Chem. Technol. 2009, 3, 221–230. https://doi.org/10.23939/chcht03.03.221
dc.relation.referencesen[6] Lactic acid. Application, properties and characteristics. ChemElement. Store of mineral fertilizers and chemical raw materials. https://him-element.com.ua/uk/news/138 (accessed 2023-11-27).
dc.relation.referencesen[7] Rybachuk, V. Lactic acid. Pharmaceutical encyclopedia. https://www.pharmencyclopedia.com.ua/arti-cle/7010/kislota-molochna (accessed 2023-11-27).
dc.relation.referencesen[8] Lactic acid. LOST Ltd. Ivano-Frankivsk. https://lost-ltd.if.ua/molochna-kyslota/ (accessed 2023-11-27).
dc.relation.referencesen[9] Lactic acid 40% 100 ml. Basalt - Animal Health. https://basalt.net.ua/ua/lactic-acid-100ml/ (accessed 2023-11-27).
dc.relation.referencesen[10] Karande, R. D.; Abitha, V. K.; Rane, A. V.; Mishra R. K. Preparation of polylactide from synthesized lactic acid and effect of reaction parameters on conversion. Journal of Materials Science and Engineering with Advanced Technology 2016, 12, 1–37. http://dx.doi.org/10.18642/jmseat_7100121546
dc.relation.referencesen[11] Komesu, A.; Oliveira, J.A.R.; Martins, L.H.; Wolf Maciel, M.R.; Maciel Filho, R. Lactic Acid Production to Purification: A Review. Bioresources 2017, 12, 4364–4383. https://doi.org/10.15376/biores.12.2.4364-4383
dc.relation.referencesen[12] Vaidya, A.N.; Pandey, R.A.; Mudliar, S.; Kumar, M.S.; Chakrabarty, T.; Devotta, S. Production and Recovery of Lactic Acid for Polylactide-An Overview. Crit. Rev. Environ. Sci. Technol. 2005, 35, 429–467. https://doi.org/10.1080/10643380590966181
dc.relation.referencesen[13] Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent Advances in Lactic Acid Production by Microbial Fermentation Processes. Biotechnol. Adv. 2013, 31, 877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002
dc.relation.referencesen[14] Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative Production of Lactic Acid from Renewable Materials: Recent Achievements, Prospects, and Limits. J. Biosci. Bioeng. 2015, 119, 10–18. https://doi.org/10.1016/j.jbiosc.2014.06.003
dc.relation.referencesen[15] Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological Production of Enantiomerically Pure D-Lactic Acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423–9437. https://doi.org/10.1007/s00253-016-7843-7
dc.relation.referencesen[16] Krishna, B.S; Saibaba, N.; Gantala, S.S.N.; Tarun, B.; Gopinadh, R. Industrial Production of Lactic Acid and Its Applications. Int. J. Biotechnol. Res. 2018, 1, 42–54. https://www.researchgate.net/publication/330292057_Industrial_production_of_lactic_acid_and_its_applications. (accessed 2023-11-27). (accessed 2023-11-27).
dc.relation.referencesen[17] Wee, Y.-J.; Kim, J.-N.; Ryu, H.-W. Biotechnological Production of Lactic Acid and Its Recent Applications Food Technol. Food Technol. Biotechnol. 2006, 44, 163–172. https://api.semanticscholar.org/CorpusID:28612386 (accessed 2023-11-27)
dc.relation.referencesen[18] Bondar, I.V.; Hulyayev, V.M. Promyslova mikrobiolohiya Kharchova i ahrobiotekhnolohiya; DDTU: Dniprodzerzhynsʹk, 2004. [in UKrainian].
dc.relation.referencesen[19] Pohanka, M. D-Lactic Acid as a Metabolite: Toxicology, Diagnosis, and Detection. BioMed Res. Int. [Online] 2020, 2020, 3419034. https://doi.org/10.1155/2020/3419034 Published online: June 18, 2020. https://www.hindawi.com/journals/bmri/2020/3419034/ (accessed 2023-11-27)
dc.relation.referencesen[20] Gao, T.; Wong, Y.; Ng, C.; Ho, K. L-Lactic Acid Production by Bacillus Subtilis MUR1. Bioresour. Technol. 2012, 121, 105–110. https://doi.org/10.1016/j.biortech.2012.06.108
dc.relation.referencesen[21] Payot, T.; Chemaly, Z.; Fick, M. Lactic Acid Production by Bacillus Coagulans-Kinetic Studies and Optimization of Culture Medium for Batch and Continuous Fermentations. Enzyme Microb. Technol. 1999, 24, 191–199. https://doi.org/10.1016/S0141-0229(98)00098-2
dc.relation.referencesen[22] Castells, A.; Leon, A.; Sosa, D.; Cadena, I.; Ramírez, D.; Serrano, L.; Larrea, F.; Almeida-Streitwieser, D.; Alvarez-Barreto, J. Evaluation of Lactic Acid Production by Different Bacillus Subtilis Strains Isolated From Theobroma Cacao Crops in Ecuador. Chem. Eng. Trans. 2022, 93, 55–60. https://doi.org/10.3303/CET2293010
dc.relation.referencesen[23] Liu, H.; Kang, J.; Qi, Q.; Chen, G. Production of Lactate in Escherichia Coli by Redox Regulation Genetically and Physiologically. Appl. Biochem. Biotechnol. 2011, 164, 162–169. https://doi.org/10.1007/s12010-010-9123-9
dc.relation.referencesen[24] Chang, D.-E.; Jung, H.-C.; Rhee, J.-S.; Pan, J.-G. Homofermentative Production of D-Orl-Lactate in Metabolically Engineered Escherichia Coli RR1. Appl. Environ. Microbiol. 1999, 65, 1384–1389. https://doi.org/10.1128/AEM.65.4.1384-1389.1999
dc.relation.referencesen[25] Okino, S.; Suda, M.; Fujikura, K.; Inui, M.; Yukawa, H. Production of D-Lactic Acid by Corynebacterium Glutamicum under Oxygen Deprivation. Appl. Microbiol. Biotechnol. 2008, 78, 449–454. https://doi.org/10.1007/s00253-007-1336-7
dc.relation.referencesen[26] Björkroth, J.; Koort, J. Lactic Acid Bacteria: Taxonomy and Biodiversity. In Encyclopedia of Dairy Sciences, 2nd ed.; Elsevier, 2011; pp. 45–48. https://doi.org/10.1016/B978-0-12-374407-4.00255-7
dc.relation.referencesen[27] Mozzi, F. Lactic Acid Bacteria. In Encyclopedia of Food and Health; Elsevier, 2016; pp. 501–508. https://doi.org/10.1016/b978-0-12-384947-2.00414-1
dc.relation.referencesen[28] Chervetsova, V. Mikrobiolohiya: konspekt lektsiy; Vydavnytstvo Lʹvivsʹkoyi politekhniky: Lʹviv, 2016 [in Ukrainian].
dc.relation.referencesen[29] Abedi, E.; Lactic Acid Production - Producing Microorganisms and Substrates Sources - State of Art. Heliyon 2020, 6, e04974. https://doi.org/10.1016/j.heliyon.2020.e04974
dc.relation.referencesen[30] UK Standards for Microbiology Investigations Identification of Bacillus Species. Bacteriology – Identification Issued by the Standards Unit, Microbiology Services, PHE, 2014. https://assets.publishing.service.gov.uk/media/5ac4e7cc40f0b60a4e1b0e7a/ID_9i3.1.pdf (accessed 2023-11-27)
dc.relation.referencesen[31] Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The Population Genetics of Commensal Escherichia Coli. Nat. Rev. Microbiol. 2010, 8, 207–217. https://doi.org/10.1038/nrmicro2298
dc.relation.referencesen[32] Förster, A.H.; Gescher, J. Metabolic Engineering of Escherichia Coli for Production of Mixed-Acid Fermentation End Products. Front. Bioeng. Biotechnol. [Online] 2014, 2, 16. https://doi.org/10.3389/fbioe.2014.00016
dc.relation.referencesen[33] Wolfe, A.J. The Acetate Switch. Microbiol. Mol. Biol. Rev. 2005, 69, 12–50. https://doi.org/10.1128/mmbr.69.1.12-50.2005
dc.relation.referencesen[34] Gopinath, V.; Nampoothiri, K.M. Corynebacterium glutamicum. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier, 2014; pp. 504–517. https://doi.org/10.1016/B978-0-12-384730-0.00076-8
dc.relation.referencesen[35] Lee, J.A.; Ahn, J.H.; Lee, S.Y. Organic Acids: Succinic and Malic Acids. In Comprehensive Biotechnology, 3nd ed.; Elsevier, 2019; pp. 172–187. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
dc.relation.referencesen[36] Inui, M.; Murakami, S.; Okino, S.; Kawaguchi, H.; Vertès, AA; Yukawa, H. Metabolic Analysis of Corynebacterium Glutamicum During Lactate and Succinate Productions Under Oxygen Deprivation Conditions. J. Mol. Microbiol. Biotechnol. 2004, 7, 182–196. https://doi.org/10.1159/000079827
dc.relation.referencesen[37] de la Torre, I.; Ladero, M.; Santos, V.E. D-Lactic Acid Production From Orange Waste Enzymatic Hydrolysates With L. Delbrueckii Cells in Growing and Resting State. Ind. Crops. Prod. 2020, 146, 112176. https://doi.org/10.1016/j.indcrop.2020.112176
dc.relation.referencesen[38] Kotzamanidis, Ch.; Roukas, T.; Skaracis, G.N. Optimization of Lactic Acid Production from Beet Molasses by Lactobacillus Delbrueckii NCIMB 8130. World J. Microbiol. Biotechnol. 2002, 18, 441–448. https://doi.org/10.1023/a:1015523126741.
dc.relation.referencesen[39] Tian, X.; Liu, X.; Zhang, Y.; Chen, Y.; Hang, H.; Chu, J.; Zhuang, Y. Metabolic Engineering Coupled With Adaptive Evolution Strategies for the Efficient Production of High-Quality L-Lactic Acid by Lactobacillus Paracasei. Bioresour. Technol. 2021, 323, 124549. https://doi.org/10.1016/j.biortech.2020.124549
dc.relation.referencesen[40] Li, Z.; Lu, J.; Zhao, L.; Xiao, K.; Tan, T. Improvement of L-Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus Rhamnosus. Appl. Biochem. Biotechnol. 2010, 162, 1762–1767 https://doi.org/10.1007/s12010-010-8957-5
dc.relation.referencesen[41] Shi, S.; Kang, L.; Lee, Y.Y. Production of Lactic Acid from the Mixture of Softwood Pre-Hydrolysate and Paper Mill Sludge by Simultaneous Saccharification and Fermentation. Appl. Biochem. Biotechnol. 2015, 175, 2741–2754. https://doi.org/10.1007/s12010-014-1451-8
dc.relation.referencesen[42] Liu, P.; Zheng, Z.; Xu, Q.; Qian, Z.; Liu, J.; Ouyang, J. Valorization of Dairy Waste for Enhanced D-Lactic Acid Production at Low Cost. Process Biochem. 2018, 71, 18–22. https://doi.org/10.1016/j.procbio.2018.05.014
dc.relation.referencesen[43] Kim, H. O.; Wee, Y. J.; Kim, J. N.; Yun, J. S.; Ryu, H. W. Production of Lactic Acid From Cheese Whey by Batch and Repeated Batch Cultures of Lactobacillus Sp. RKY2. Appl. Biochem. Biotechnol. 2006, 131, 694–704. https://doi.org/10.1385/ABAB:131:1:694
dc.relation.referencesen[44] Büyükkileci, A.O.; Harsa, S. Batch Production of L(+) Lactic Acid From Whey by Lactobacillus Casei(NRRL B-441). J. Chem. Technol. Biotechnol. 2004, 79, 1036–1040. https://doi.org/10.1002/jctb.1094
dc.relation.referencesen[45] de Oliveira, J.; Porto de Souza Vandenberghe, L.; Zwiercheczewski de Oliveira, P.; Murawski de Mello, A. F.; Rodrigues, C.; Singh Nigam, P.; Faraco, V.; Soccol, C.R. Bioconversion of Potato-Processing Wastes Into an Industrially-Important Chemical Lactic Acid. Bioresour. Technol. Rep. 2021, 15, 100698. https://doi.org/10.1016/j.biteb.2021.100698
dc.relation.referencesen[46] Shi, Z.; Wei, P.; Zhu, X.; Cai, J.; Huang, L.; Xu, Z. Efficient Production of L-Lactic Acid From Hydrolysate of Jerusalem Artichoke With Immobilized Cells of Lactococcus Lactis in Fibrous Bed Bioreactors. Enzyme Microb. Technol. 2012, 51, 263–268. https://doi.org/10.1016/j.enzmictec.2012.07.007
dc.relation.referencesen[47] Oh, H.; Wee, Y.-J.; Yun, J.-S.; Ryu, H.-W. Lactic Acid Production through Cell-Recycle Repeated-Batch Bioreactor. Appl. Biochem. Biotechnol. 2003, 107, 603–614. https://doi.org/10.1385/ABAB:107:1-3:603
dc.relation.referencesen[48] Wee, Y.-J.; Kim, J.-N.; Yun, J.-S.; Ryu, H.-W. Utilization of Sugar Molasses for Economical L(+)-Lactic Acid Production by Batch Fermentation of Enterococcus Faecalis. Enzyme Microb. Technol. 2004, 35, 568–573. https://doi.org/10.1016/j.enzmictec.2004.08.008
dc.relation.referencesen[49] Cox, R.; Narisetty, V.; Nagarajan, S.; Agrawal, D.; Ranade, V.V.; Salonitis, K.; Venus, J.; Kumar, V. High-Level Fermentative Production of Lactic Acid From Bread Waste Under Non-Sterile Conditions With a Circular Biorefining Approach and Zero Waste Discharge. Fuel 2022, 313, 122976. https://doi.org/10.1016/j.fuel.2021.122976
dc.relation.referencesen[50] Xu, K.; Xu, P. Efficient Production of L-Lactic Acid Using Co-Feeding Strategy Based on Cane Molasses/Glucose Carbon Sources. Bioresour. Technol. 2014, 153, 23–29. https://doi.org/10.1016/j.biortech.2013.11.057
dc.relation.referencesen[51] Budhavaram, N.K.; Fan, Z. Production of Lactic Acid from Paper Sludge Using Acid-Tolerant, Thermophilic Bacillus Coagulan Strains. Bioresour. Technol. 2009, 100, 5966–5972. https://doi.org/10.1016/j.biortech.2009.01.080
dc.relation.referencesen[52] Ye, L.; Zhou, X.; Hudari, M.S.B.; Li, Z.; Wu, J.C. Highly Efficient Production of L-Lactic Acid From Xylose by Newly Isolated Bacillus Coagulans P.106. Bioresour. Technol. 2013, 132, 38–44. https://doi.org/10.1016/j.biortech.2013.01.011
dc.relation.referencesen[53] Meng, Y.; Xue, Y.; Yu, B.; Gao, C.; Ma, Y. Efficient Production of L-Lactic Acid With High Optical Purity by Alkaliphilic Bacillus Sp. WL-S20. Bioresour. Technol. 2012, 116, 334–339. https://doi.org/10.1016/j.biortech.2012.03.103
dc.relation.referencesen[54] Tian, K.; Chen, X.; Shen, W.; Prior, B.A.; Shi G.; Singh S.; Wang Z. High-Efficiency Conversion of Glycerol to D-Lactic Acid with Metabolically Engineered Escherichia Coli. Afr. J. Biotechnol. 2012, 11, 4860–4867. https://doi.org/10.5897/ajb11.3464
dc.relation.referencesen[55] Wang, Y.; Li, K.; Huang, F.; Wang, J.; Zhao, J.; Zhao, X.; Garza, E.; Manow, R.; Grayburn, S.; Zhou, S. Engineering and Adaptive Evolution of Escherichia Coli W for L-Lactic Acid Fermentation From Molasses and Corn Steep Liquor Without Additional Nutrients. Bioresour. Technol. 2013, 148, 394–400. https://doi.org/10.1016/j.biortech.2013.08.114
dc.relation.referencesen[56] Liu, Y.; Gao, W.; Zhao, X.; Wang, J.; Garza, E.; Manow, R.; Zhou, S. Pilot Scale Demonstration of D -Lactic Acid Fermentation Facilitated by Ca(OH)2 Using a Metabolically Engineered Escherichia Coli. Bioresour. Technol. 2014, 169, 559–565. https://doi.org/10.1016/j.biortech.2014.06.056
dc.relation.referencesen[57] Wang, Y.; Meng, H.; Cai, D.; Wang, B.; Qin, P.; Wang, Z.; Tan, T. Improvement of L-Lactic Acid Productivity From Sweet Sorghum Juice by Repeated Batch Fermentation Coupled With Membrane Separation. Bioresour. Technol. 2016, 211, 291–297. https://doi.org/10.1016/j.biortech.2016.03.095
dc.relation.referencesen[58] Liang, S.; McDonald, A.G.; Coats, E.R. Lactic Acid Production From Potato Peel Waste by Anaerobic Sequencing Batch Fermentation Using Undefined Mixed Culture. Waste Manage. 2015, 45, 51–56. https://doi.org/10.1016/j.wasman.2015.02.004
dc.relation.referencesen[59] Lian, T.; Zhang, W.; Cao, Q.; Wang, S.; Dong, H. Enhanced Lactic Acid Production from the Anaerobic Co-Digestion of Swine Manure with Apple or Potato Waste via Ratio Adjustment. Bioresour. Technol. 2020, 318, 124237. https://doi.org/10.1016/j.biortech.2020.124237
dc.relation.referencesen[60] Xiaodong, W.; Xuan, G.; Rakshit, S.K. Direct Fermentative Production of Lactic Acid on Cassava and Other Starch Substrates. Biotechnol. Lett. 1997, 19, 841–843. https://doi.org/10.1023/A:1018321200591
dc.relation.referencesen[61] Reddy, G.; Altaf, Md.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic Bacterial Lactic Acid Fermentation - a Review. Biotechnol. Adv. 2008, 26, 22–34. https://doi.org/10.1016/j.biotechadv.2007.07.004
dc.relation.referencesen[62] Kerketta, A.; Panda, T.C.; Ray, R.C.; Behera, S.S. Amylolytic Lactic Acid Bacteria: Cell Factories for Direct Lactic Acid Production from Biomass by Simultaneous Saccharification and Fermentation. In Lactic Acid Bacteria as Cell Factories; Elsevier, 2023; pp. 199–217. https://doi.org/10.1016/B978-0-323-91930-2.00003-1
dc.relation.referencesen[63] Cui, F.; Li, Y.; Wan, C. Lactic Acid Production From Corn Stover Using Mixed Cultures of Lactobacillus Rhamnosus and Lactobacillus Brevis. Bioresour. Technol. 2011, 102, 1831–1836. https://doi.org/10.1016/j.biortech.2010.09.063
dc.relation.referencesen[64] Bai, Z.; Gao, Z.; Sun, J.; Wu, B.; He, B. D-Lactic Acid Production by Sporolactobacillus Inulinus YBS1-5 With Simultaneous Utilization of Cottonseed Meal and Corncob Residue. Bioresour. Technol. 2016, 207, 346–352. https://doi.org/10.1016/j.biortech.2016.02.007
dc.relation.referencesen[65] John, R.P.; Nampoothiri, K.M.; Pandey, A. Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Appl. Biochem. Biotechnol. 2006, 134, 263–272. https://doi.org/10.1385/ABAB:134:3:263
dc.relation.referencesen[66] Sreenath, H.K.; Moldes, A.B.; Koegel, R.G.; Straub, R.J. Lactic Acid Production from Agricultural Residues. Biotechnol. Lett. 2001, 23, 179–184. https://doi.org/10.1023/A:1005651117831
dc.relation.referencesen[67] Moldes, A.B.; Alonso, J.L.; Parajó, J.C. Strategies to Improve the Bioconversion of Processed Wood into Lactic Acid by Simultaneous Saccharification and Fermentation. J. Chem. Technol. Biotechnol. 2001, 76, 279–284. https://doi.org/10.1002/jctb.381
dc.relation.referencesen[68] Wee, Y.J.; Yun, J.S.; Kim, D.; Ryu, H.W. Batch and Repeated Batch Production of L(+)-Lactic Acid by Enterococcus Faecalis RKY1 Using Wood Hydrolyzate and Corn Steep Liquor. J. Ind. Microbiol. Biotechnol. 2006, 33, 431–435. https://doi.org/10.1007/s10295-006-0084-5
dc.relation.referencesen[69] Panesar, P.; Kennedy, J.; Gandhi, D.; Bunko, K. Bioutilization of Whey for Lactic Acid Production. Food Chem. 2007, 105, 1–14. https://doi.org/10.1016/j.foodchem.2007.03.035
dc.relation.referencesen[70] Dumbrepatil, A.; Adsul, M.; Chaudhary, S.; Khire, J.; Gokhale, D. Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation. Appl. Environ. Microbiol. 2007, 74, 333–335. https://doi.org/10.1128/aem.01595-07
dc.relation.referencesen[71] Mladenović, D.; Pejin, J.; Kocić-Tanackov, S.; Radovanović, Ž.; Djukić-Vuković, A.; Mojović, L. Lactic Acid Production on Molasses Enriched Potato Stillage by Lactobacillus Paracasei Immobilized Onto Agro-Industrial Waste Supports. Ind. Crop. Prod. 2018, 124, 142–148. https://doi.org/10.1016/j.indcrop.2018.07.081
dc.relation.referencesen[72] Alonso, S.; Herrero, M.; Rendueles, M.; Díaz, M. Residual Yoghurt Whey for Lactic Acid Production. Biomass Bioenergy 2010, 34, 931–938. https://doi.org/10.1016/j.biombioe.2010.01.041
dc.relation.referencesen[73] Song, L.; Yang, D.; Liu, R.; Liu, S.; Dai, L.; Dai, X. Microbial Production of Lactic Acid From Food Waste: Latest Advances, Limits, and Perspectives. Bioresour. Technol. 2021, 126052. https://doi.org/10.1016/j.biortech.2021.126052
dc.relation.urihttps://www.futuremarketinsights.com/reports/global-organic-acids-market
dc.relation.urihttps://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market
dc.relation.urihttps://doi.org/10.23939/chcht15.04.621
dc.relation.urihttps://doi.org/10.23939/chcht15.02.191
dc.relation.urihttps://doi.org/10.23939/chcht03.03.221
dc.relation.urihttps://him-element.com.ua/uk/news/138
dc.relation.urihttps://www.pharmencyclopedia.com.ua/arti-cle/7010/kislota-molochna
dc.relation.urihttps://lost-ltd.if.ua/molochna-kyslota/
dc.relation.urihttps://basalt.net.ua/ua/lactic-acid-100ml/
dc.relation.urihttp://dx.doi.org/10.18642/jmseat_7100121546
dc.relation.urihttps://doi.org/10.15376/biores.12.2.4364-4383
dc.relation.urihttps://doi.org/10.1080/10643380590966181
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2013.04.002
dc.relation.urihttps://doi.org/10.1016/j.jbiosc.2014.06.003
dc.relation.urihttps://doi.org/10.1007/s00253-016-7843-7
dc.relation.urihttps://www.researchgate.net/publication/330292057_Industrial_production_of_lactic_acid_and_its_applications
dc.relation.urihttps://api.semanticscholar.org/CorpusID:28612386
dc.relation.urihttps://doi.org/10.1155/2020/3419034
dc.relation.urihttps://www.hindawi.com/journals/bmri/2020/3419034/
dc.relation.urihttps://doi.org/10.1016/j.biortech.2012.06.108
dc.relation.urihttps://doi.org/10.1016/S0141-0229(98)00098-2
dc.relation.urihttps://doi.org/10.3303/CET2293010
dc.relation.urihttps://doi.org/10.1007/s12010-010-9123-9
dc.relation.urihttps://doi.org/10.1128/AEM.65.4.1384-1389.1999
dc.relation.urihttps://doi.org/10.1007/s00253-007-1336-7
dc.relation.urihttps://doi.org/10.1016/B978-0-12-374407-4.00255-7
dc.relation.urihttps://doi.org/10.1016/b978-0-12-384947-2.00414-1
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2020.e04974
dc.relation.urihttps://assets.publishing.service.gov.uk/media/5ac4e7cc40f0b60a4e1b0e7a/ID_9i3.1.pdf
dc.relation.urihttps://doi.org/10.1038/nrmicro2298
dc.relation.urihttps://doi.org/10.3389/fbioe.2014.00016
dc.relation.urihttps://doi.org/10.1128/mmbr.69.1.12-50.2005
dc.relation.urihttps://doi.org/10.1016/B978-0-12-384730-0.00076-8
dc.relation.urihttps://doi.org/10.1016/B978-0-444-64046-8.00159-2
dc.relation.urihttps://doi.org/10.1159/000079827
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2020.112176
dc.relation.urihttps://doi.org/10.1023/a:1015523126741
dc.relation.urihttps://doi.org/10.1016/j.biortech.2020.124549
dc.relation.urihttps://doi.org/10.1007/s12010-010-8957-5
dc.relation.urihttps://doi.org/10.1007/s12010-014-1451-8
dc.relation.urihttps://doi.org/10.1016/j.procbio.2018.05.014
dc.relation.urihttps://doi.org/10.1385/ABAB:131:1:694
dc.relation.urihttps://doi.org/10.1002/jctb.1094
dc.relation.urihttps://doi.org/10.1016/j.biteb.2021.100698
dc.relation.urihttps://doi.org/10.1016/j.enzmictec.2012.07.007
dc.relation.urihttps://doi.org/10.1385/ABAB:107:1-3:603
dc.relation.urihttps://doi.org/10.1016/j.enzmictec.2004.08.008
dc.relation.urihttps://doi.org/10.1016/j.fuel.2021.122976
dc.relation.urihttps://doi.org/10.1016/j.biortech.2013.11.057
dc.relation.urihttps://doi.org/10.1016/j.biortech.2009.01.080
dc.relation.urihttps://doi.org/10.1016/j.biortech.2013.01.011
dc.relation.urihttps://doi.org/10.1016/j.biortech.2012.03.103
dc.relation.urihttps://doi.org/10.5897/ajb11.3464
dc.relation.urihttps://doi.org/10.1016/j.biortech.2013.08.114
dc.relation.urihttps://doi.org/10.1016/j.biortech.2014.06.056
dc.relation.urihttps://doi.org/10.1016/j.biortech.2016.03.095
dc.relation.urihttps://doi.org/10.1016/j.wasman.2015.02.004
dc.relation.urihttps://doi.org/10.1016/j.biortech.2020.124237
dc.relation.urihttps://doi.org/10.1023/A:1018321200591
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2007.07.004
dc.relation.urihttps://doi.org/10.1016/B978-0-323-91930-2.00003-1
dc.relation.urihttps://doi.org/10.1016/j.biortech.2010.09.063
dc.relation.urihttps://doi.org/10.1016/j.biortech.2016.02.007
dc.relation.urihttps://doi.org/10.1385/ABAB:134:3:263
dc.relation.urihttps://doi.org/10.1023/A:1005651117831
dc.relation.urihttps://doi.org/10.1002/jctb.381
dc.relation.urihttps://doi.org/10.1007/s10295-006-0084-5
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2007.03.035
dc.relation.urihttps://doi.org/10.1128/aem.01595-07
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2018.07.081
dc.relation.urihttps://doi.org/10.1016/j.biombioe.2010.01.041
dc.relation.urihttps://doi.org/10.1016/j.biortech.2021.126052
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Kiiv D., Vasylyuk S., Lubenets V., 2024
dc.subjectмолочна кислота
dc.subjectбіотехнологія
dc.subjectвиробництво
dc.subjectпродуценти молочної кислоти
dc.subjectсубстрати для синтезу молочної кислоти
dc.subjectlactic acid
dc.subjectbiotechnology
dc.subjectproduction
dc.subjectlactic acid producers
dc.subjectsubstrates for the synthesis of lactic acid
dc.titleLactic Acid: Industrial Synthesis, Microorganisms-Producers and Substrates. A Review
dc.title.alternativeМолочна кислота: промисловий синтез, мікроорганізми-продуценти та субстрати. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Kiiv_D-Lactic_Acid_Industrial_Synthesis_157-169.pdf
Size:
765.48 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Kiiv_D-Lactic_Acid_Industrial_Synthesis_157-169__COVER.png
Size:
531.57 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: