Reflection of the activity of landslide processes in the regional gravitational and magnetic fields (on the example of the Transcarpathian region).

dc.citation.epage77
dc.citation.issue1(30)
dc.citation.journalTitleГеодинаміка
dc.citation.spage65
dc.contributor.affiliationІвано-Франківський національний технічний університет нафти і газу
dc.contributor.affiliationIvano-Frankivsk National Technical University of Oil and Gas
dc.contributor.authorШтогрин, Людмила
dc.contributor.authorАнікеєв, Сергій
dc.contributor.authorКузьменко, Едуард
dc.contributor.authorБагрій, Сергій
dc.contributor.authorShtohryn, Liudmyla
dc.contributor.authorAnikeyev, Sergiy
dc.contributor.authorKuzmenko, Eduard
dc.contributor.authorBagriy, Sergiy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T07:16:23Z
dc.date.available2023-07-03T07:16:23Z
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.description.abstractМетою досліджень, представлених у цій статті, є аналіз особливостей відображення ураженості території Закарпатської області зсувними процесами в аномаліях магнітного та гравітаційного полів з урахуванням тектонічного районування. Дослідження є важливим етапом у прогнозуванні зсувних процесів, який спрямовано на зменшення їхніх негативних наслідків на довкілля. Актуальність досліджень зумовлена зростаючою активізацією зсувних процесів у Карпатському регіоні України. Методика. Розвиток зсувів у кожній структурно-тектонічній зоні має зв’язок із її тектонічною будовою, і тому зазначені процеси можуть мати різну інтенсивність, динаміку, тенденцію до подальшого розвитку та площу поширення. Літолого-фаціальний склад та умови залягання порід формують фізико-механічні властивості порід, визначаючи швидкість і механізм розвитку зсувів. Просторова приуроченість зсувних процесів до розломних зон знаходить своє відображення у гравітаційному та магнітному полях. Результати. За допомогою засобів ГІС MapInfo виконано розрахунок кількості зсувів у кожній тектонічній зоні, аномалій гравітаційного та магнітного полів, площ, що уражені зсувами, відстані до зон простягання розломів. Важливим результатом досліджень є доведення прямого зв’язку між просторовим розподілом зсувів і розломними зонами, тектонічною будовою, літологічним складом порід, які відображаються у гравімагнітних аномаліях. Наукова новизна. Розглянуто особливості відображення тектонічної будови, зон розущільнення, подрібненості порід та літологічного складу в гравімагнітних полях регіонального масштабу, а також вперше оцінено їхній зв’язок із зсувними процесами. Практична значущість. Теоретичне обґрунтування особливостей поведінки гравімагнітних полів у зонах поширення зсувних процесів дозволяє оцінити природні умови формування та розвитку зсувів у даному регіоні. Виявлені зв’язки між впливом розломних зон на зсувні процеси за їхнім відображенням у гравімагнітних полях, які можуть у майбутньому застосовуватись під час просторового прогнозування розвитку зсувів на територіях зі спорідненими структурно-тектонічними умовами.
dc.description.abstractPurpose. The aim of the research presented in this article is to analyze the features of the reflection of the damage to the territory of the Transcarpathian region by landslide processes based on the anomalies in the magnetic and gravitational fields, taking into account tectonic zoning. The study is an important stage in predicting the landslide processes and it is aimed at reducing their negative effects on the environment. The relevance of the research is due to the growing intensification of landslides in the Carpathian region of Ukraine. Methodology. The development of landslides in each structural-tectonic zone is associated with its tectonic structure, and therefore these processes can have different intensity, dynamics, tendencies for further development and distribution area. Lithological-facies composition and bedding conditions of rocks form the physical and mechanical properties of rocks, determining the rate and mechanism of the development of landslides. The spatial confinedness of landslide processes in the fault zones is reflected in the gravitational and magnetic fields. Results. With the help of GIS MapInfo tools, a number of landslides in each tectonic zone, anomalies in the gravitational and magnetic fields, areas affected by landslides, the distance to the fault zones were calculated. The important result of the research is to prove a direct correlation between the spatial distribution of landslides and fault zones, tectonic structure, the lithological composition of rocks, which are reflected in gravimagnetic anomalies. Scientific novelty. The peculiarities of the reflection of the tectonic structure, zones of decompression, fragmentation of rocks and lithological composition in gravimagnetic fields on a regional scale are examined, and their association with landslide processes is evaluated for the first time. Practical significance. The theoretical substantiation of the peculiarities of the behaviour of gravimagnetic fields in the zones of distribution of landslide processes makes it possible to assess the natural conditions for the formation and development of landslides in a given region. The connection between the impact of the fault zones on landslide processes by their reflection in gravimagnetic fields is established, which can be used in the future for spatial forecasting of the development of landslides in territories with related structural-tectonic conditions.
dc.format.extent65-77
dc.format.pages13
dc.identifier.citationReflection of the activity of landslide processes in the regional gravitational and magnetic fields (on the example of the Transcarpathian region). / Liudmyla Shtohryn, Sergiy Anikeyev, Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 65–77.
dc.identifier.citationenReflection of the activity of landslide processes in the regional gravitational and magnetic fields (on the example of the Transcarpathian region). / Liudmyla Shtohryn, Sergiy Anikeyev, Eduard Kuzmenko, Sergiy Bagriy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 65–77.
dc.identifier.doidoi.org/10.23939/jgd2021.01.065
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59348
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(30), 2021
dc.relation.ispartofGeodynamics, 1(30), 2021
dc.relation.referencesAnikeiev, S. G., Maksymchuk, V. Yu., & Pylyp’yak, M. M., (2019). Gravity-magnetic model
dc.relation.referencesof the Kolomyia paleovalley for the Nadvirna–
dc.relation.referencesOtyniya–Ivano-Frankivsk geotravers. Journal oh
dc.relation.referencesGeophysics,(41(6)), 73–92. (in Ukrainian).
dc.relation.referencesCheban, V. D. (2002). .A set of geophysical methods
dc.relation.referencesfor predicting landslides on the example of Transcarpathia. Author's ref. dis ... k. geol. Science.
dc.relation.referencesIvano-Frankivsk: IFNTUNG. 19 p. (in Ukrainian).
dc.relation.referencesClark, S., Jr. (1969). Handbook of physical constants
dc.relation.referencesof rocks. Textbook.: Мyr, 543 p. (in Russian).
dc.relation.referencesCastro, D., Bezerra, F., Sousa, M., & Fuck, R. Influence
dc.relation.referencesof Neoproterozoic tectonic fabric on the origin of
dc.relation.referencesthe Potiguar Basin, northeastern Brazil and its
dc.relation.referenceslinks with West Africa based on gravity and
dc.relation.referencesmagnetic data. Journal of Geodynamics, 2012.
dc.relation.referencesVol. 54, P. 29–42. URL https://www.sciencedirect.com/science/article/abs/pii/S0264370711001013.
dc.relation.referencesGoshovsky, S. V., Rudko, G. I., & Blinov, P. V.
dc.relation.references(2004). Engineering-geological analysis, monitoring
dc.relation.referencesand protection of the territory from landslides:
dc.relation.referencesTextbook. ZUKC, 152 p. (in Ukrainian).
dc.relation.referencesGuiju, Wu, Hongbo, Tan, Zhegbo, Zou, Guangliang,
dc.relation.referencesYang, & Chongyang, Shen. (2015). Gravity
dc.relation.referencesdistribution characteristics and their relationship
dc.relation.referenceswith the distribution of earthquakes and tectonic
dc.relation.referencesunits in the North–South seismic belt, China.
dc.relation.referencesGeodesy and Geodynamics. 6, 194–202. URL
dc.relation.referenceshttps://www.sciencedirect.com/science/article/pii/S1674984715000208.
dc.relation.referencesDemchishin, M. G. (1992) Modern dynamics of slopes
dc.relation.referenceson the territory of Ukraine. Textbook. Naukova
dc.relation.referencesdumka, 251 p. (in Russian).
dc.relation.referencesEmelianova, E. P. (1978). Basic regularities of landslide
dc.relation.referencesprocesses. Moscow: Nedra, 308 p. (in Russian).
dc.relation.referencesIvanik, O. (2008). Spatial analysis and forecast
dc.relation.referencesassessment of formation of water-gravity processes
dc.relation.referenceson the basis of GIS in the Carpathian region.
dc.relation.referencesGeoinformatics, 4, 52-58. (in Ukrainian).
dc.relation.referencesJarg, L. A. (1974). Changes in the physical and
dc.relation.referencesmechanical properties of rocks during weathering.
dc.relation.referencesTextbook. Nedra, 140 p. (in Russian).
dc.relation.referencesKuzmenko, E. D., Bezsmertnyi, A. F., Vdovyna, O. P.,
dc.relation.referencesKryviuk, I. V., Cheban, V. D., & Shtohryn L. V.
dc.relation.references(2009). Research of landslide processes by
dc.relation.referencesgeophysical methods [Text]: Monograph. IvanoFrankivsk: IFNTUNH, 294 p. (in Ukrainian).
dc.relation.referencesKüntzel, V. V. (1980). Regularities of the landslide
dc.relation.referencesprocess on the European territory of the USSR and
dc.relation.referencesits regional forecast. Textbook. Nedra, 213 p. (in
dc.relation.referencesRussian).
dc.relation.referencesLomtadze, V. D. (1977). Engineering geology. Engineering geodynamics. Textbook. Nedra, 479 p. (in
dc.relation.referencesRussian).
dc.relation.referencesMaevsky, B. Y., Anikeev, S. G, & Monchak, L. S.
dc.relation.references(2012). The latest studies of the geological structure
dc.relation.referencesand prospects of oil and gas potential of deepubmerged horizons of the Ukrainian Carpathians for
dc.relation.referencesorder. Textbook. IFNTUNG, 208 p. (in Ukrainian).
dc.relation.referencesMaksymchuk, V. Yu., Pirozhok, N. B. Pronyshyn, R. S.
dc.relation.references& Tymoschuk, V. R. (2014). Some features of
dc.relation.referencesseismicity of Transcarpathia. Geodynamics. 2, 139–149. (in Ukrainian).
dc.relation.referencesMikhailov, V. A. (2002). Fundamentals of geotectonics: Textbook. Kyiv University Publishing and
dc.relation.referencesPrinting Center, 168 p. (in Ukrainian).
dc.relation.referencesMonchak, L. S., & Anikeiev, S. G. (2017). Display of
dc.relation.referencesthe tectonic structure of the Western region of
dc.relation.referencesUkraine in the Gravimagnetic fields. Geodynamics. 2 (23). 104–118. (in Ukrainian).
dc.relation.referencesNazarevych, A. V., Nazarevych, L. E. (2013). Geodynamics, tectonics and seismicity of Carpathian
dc.relation.referencesregion of Ukraine. Geodynamics. 2. 247–249. (in
dc.relation.referencesUkrainian).
dc.relation.referencesNechaeva, T. S., Garkavko, V. M., Shymkiv, L. M., &
dc.relation.referencesYentin, V. A. (2002). Map of the anomalous magnetic field of Ukraine PDRGP “Pivnichrukgeologiya”.
dc.relation.referencesNechaeva, T. S., Shymkiv, L. M., & Entin, V. A.
dc.relation.references(2002). Scheme of the gravitational field of
dc.relation.referencesUkraine. K.: PDRGP “Northern Geology”.
dc.relation.referencesNurwidyanto, M. I., Yulianto, Т., & Widada, S.
dc.relation.referencesModeling of semarang fault zone using gravity
dc.relation.referencesmethod. Journal of Physics Conference Series, 2019. URL https://iopscience.iop.org/article/10.1088/1742-6596/1217/1/012031/pdf.
dc.relation.referencesRudko, G. I., Cheban, V. D., Kuzmenko, E. D., &
dc.relation.referencesPetryk, M. V. (2002). Development of slope gravitational processes in Transcarpathia in accordance
dc.relation.referenceswith the tectonic structure of the region.
dc.relation.referencesGeological Journal. 2. 66–72. (in Ukrainian).
dc.relation.referencesRudko, G. I. (1991).Geodynamics and forecast of
dc.relation.referencesdangerous geological processes of the Carpathian
dc.relation.referencesregion: Abstract. dis. Dr. Geol.-Mineral. Science: 04.0.07. Inst. Sciences of the National Academy
dc.relation.referencesof Sciences of Ukraine. 65 p.. (in Russian).
dc.relation.referencesSheko, A. I., Postoev G. P., & Goryainov N. I. (1982).
dc.relation.referencesStudy of the regime of landslide processes
dc.relation.referencesTextbook. Nedra, 255 p. (in Russian).
dc.relation.referencesSheko, A. I., Postoev, G. P., Krupoderov, V. S.,
dc.relation.referencesDyakonova, V. I., Malneva, I. V., Parfenov, S. I.,
dc.relation.referencesBondarenko, A. A., & Kruglova, L. V. (1999).
dc.relation.referencesMethodical recommendations for compiling longterm forecasts of exogenous geological processes
dc.relation.referencesin the system of state monitoring of the geological
dc.relation.referencesenvironment. Textbook. VSEGINGEO, 78 p. (in
dc.relation.referencesRussian).
dc.relation.referencesSherman, S. I., Bornyakov, S. A., & Buddo, V. Yu.
dc.relation.references(1983). Areas of dynamic influence of faults
dc.relation.references(simulation results). Textbook. Nauka, 110 p. (in
dc.relation.referencesRussian).
dc.relation.referencesShtohryn, L., Kasiyanchuk, D., & Kuzmenko, E.
dc.relation.references(2020). The problem of long-term prediction of
dc.relation.referenceslandslide processes within the Transcarpatian inner
dc.relation.referencesdepression of the Carpatian region of Ukraine.
dc.relation.referencesCarpathian Journal of Earth and Environmental
dc.relation.referencesSciences, 15(1), 157–166.
dc.relation.referencesState geological map of Ukraine scale 1: 200000. (2003),
dc.relation.referencessheets M-34-XXIX (Snina), M-34-XXXV
dc.relation.references(Uzhhorod), L-34-V (Satu Mare). Ministry of
dc.relation.referencesEcology and Natural Resources of Ukraine,
dc.relation.referencesState Geological Enterprise “Zakhidukrgeologiya”, 96 p.
dc.relation.referencesSungchan Choi, In-Chang Ryu, Young-Cheol Lee, &
dc.relation.referencesYujin Son. (2020). Gravity and magnetic field
dc.relation.referencesinterpretation to detect deep buried paleobasinal
dc.relation.referencesfault lines contributing to intraplate earthquakes:
dc.relation.referencesa case study from Pohang Basin, SE Korea.
dc.relation.referencesGeophysical Journal International, 220(1), 490-500. URL https://ui.adsabs.harvard.edu/abs/2020GeoJI.220..490C/abstract.
dc.relation.referencesTyapkin, O. K. (2002). The use of gravity and
dc.relation.referencesmagnetic exploration in environmental research.
dc.relation.referencesGeophysical Journal. 24(2). 71–78. (in Russian).
dc.relation.referencesenAnikeiev, S. G., Maksymchuk, V. Yu., & Pylyp’yak, M. M., (2019). Gravity-magnetic model
dc.relation.referencesenof the Kolomyia paleovalley for the Nadvirna–
dc.relation.referencesenOtyniya–Ivano-Frankivsk geotravers. Journal oh
dc.relation.referencesenGeophysics,(41(6)), 73–92. (in Ukrainian).
dc.relation.referencesenCheban, V. D. (2002). .A set of geophysical methods
dc.relation.referencesenfor predicting landslides on the example of Transcarpathia. Author's ref. dis ... k. geol. Science.
dc.relation.referencesenIvano-Frankivsk: IFNTUNG. 19 p. (in Ukrainian).
dc.relation.referencesenClark, S., Jr. (1969). Handbook of physical constants
dc.relation.referencesenof rocks. Textbook., Myr, 543 p. (in Russian).
dc.relation.referencesenCastro, D., Bezerra, F., Sousa, M., & Fuck, R. Influence
dc.relation.referencesenof Neoproterozoic tectonic fabric on the origin of
dc.relation.referencesenthe Potiguar Basin, northeastern Brazil and its
dc.relation.referencesenlinks with West Africa based on gravity and
dc.relation.referencesenmagnetic data. Journal of Geodynamics, 2012.
dc.relation.referencesenVol. 54, P. 29–42. URL https://www.sciencedirect.com/science/article/abs/pii/S0264370711001013.
dc.relation.referencesenGoshovsky, S. V., Rudko, G. I., & Blinov, P. V.
dc.relation.referencesen(2004). Engineering-geological analysis, monitoring
dc.relation.referencesenand protection of the territory from landslides:
dc.relation.referencesenTextbook. ZUKC, 152 p. (in Ukrainian).
dc.relation.referencesenGuiju, Wu, Hongbo, Tan, Zhegbo, Zou, Guangliang,
dc.relation.referencesenYang, & Chongyang, Shen. (2015). Gravity
dc.relation.referencesendistribution characteristics and their relationship
dc.relation.referencesenwith the distribution of earthquakes and tectonic
dc.relation.referencesenunits in the North–South seismic belt, China.
dc.relation.referencesenGeodesy and Geodynamics. 6, 194–202. URL
dc.relation.referencesenhttps://www.sciencedirect.com/science/article/pii/S1674984715000208.
dc.relation.referencesenDemchishin, M. G. (1992) Modern dynamics of slopes
dc.relation.referencesenon the territory of Ukraine. Textbook. Naukova
dc.relation.referencesendumka, 251 p. (in Russian).
dc.relation.referencesenEmelianova, E. P. (1978). Basic regularities of landslide
dc.relation.referencesenprocesses. Moscow: Nedra, 308 p. (in Russian).
dc.relation.referencesenIvanik, O. (2008). Spatial analysis and forecast
dc.relation.referencesenassessment of formation of water-gravity processes
dc.relation.referencesenon the basis of GIS in the Carpathian region.
dc.relation.referencesenGeoinformatics, 4, 52-58. (in Ukrainian).
dc.relation.referencesenJarg, L. A. (1974). Changes in the physical and
dc.relation.referencesenmechanical properties of rocks during weathering.
dc.relation.referencesenTextbook. Nedra, 140 p. (in Russian).
dc.relation.referencesenKuzmenko, E. D., Bezsmertnyi, A. F., Vdovyna, O. P.,
dc.relation.referencesenKryviuk, I. V., Cheban, V. D., & Shtohryn L. V.
dc.relation.referencesen(2009). Research of landslide processes by
dc.relation.referencesengeophysical methods [Text]: Monograph. IvanoFrankivsk: IFNTUNH, 294 p. (in Ukrainian).
dc.relation.referencesenKüntzel, V. V. (1980). Regularities of the landslide
dc.relation.referencesenprocess on the European territory of the USSR and
dc.relation.referencesenits regional forecast. Textbook. Nedra, 213 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenLomtadze, V. D. (1977). Engineering geology. Engineering geodynamics. Textbook. Nedra, 479 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenMaevsky, B. Y., Anikeev, S. G, & Monchak, L. S.
dc.relation.referencesen(2012). The latest studies of the geological structure
dc.relation.referencesenand prospects of oil and gas potential of deepubmerged horizons of the Ukrainian Carpathians for
dc.relation.referencesenorder. Textbook. IFNTUNG, 208 p. (in Ukrainian).
dc.relation.referencesenMaksymchuk, V. Yu., Pirozhok, N. B. Pronyshyn, R. S.
dc.relation.referencesen& Tymoschuk, V. R. (2014). Some features of
dc.relation.referencesenseismicity of Transcarpathia. Geodynamics. 2, 139–149. (in Ukrainian).
dc.relation.referencesenMikhailov, V. A. (2002). Fundamentals of geotectonics: Textbook. Kyiv University Publishing and
dc.relation.referencesenPrinting Center, 168 p. (in Ukrainian).
dc.relation.referencesenMonchak, L. S., & Anikeiev, S. G. (2017). Display of
dc.relation.referencesenthe tectonic structure of the Western region of
dc.relation.referencesenUkraine in the Gravimagnetic fields. Geodynamics. 2 (23). 104–118. (in Ukrainian).
dc.relation.referencesenNazarevych, A. V., Nazarevych, L. E. (2013). Geodynamics, tectonics and seismicity of Carpathian
dc.relation.referencesenregion of Ukraine. Geodynamics. 2. 247–249. (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenNechaeva, T. S., Garkavko, V. M., Shymkiv, L. M., &
dc.relation.referencesenYentin, V. A. (2002). Map of the anomalous magnetic field of Ukraine PDRGP "Pivnichrukgeologiya".
dc.relation.referencesenNechaeva, T. S., Shymkiv, L. M., & Entin, V. A.
dc.relation.referencesen(2002). Scheme of the gravitational field of
dc.relation.referencesenUkraine. K., PDRGP "Northern Geology".
dc.relation.referencesenNurwidyanto, M. I., Yulianto, T., & Widada, S.
dc.relation.referencesenModeling of semarang fault zone using gravity
dc.relation.referencesenmethod. Journal of Physics Conference Series, 2019. URL https://iopscience.iop.org/article/10.1088/1742-6596/1217/1/012031/pdf.
dc.relation.referencesenRudko, G. I., Cheban, V. D., Kuzmenko, E. D., &
dc.relation.referencesenPetryk, M. V. (2002). Development of slope gravitational processes in Transcarpathia in accordance
dc.relation.referencesenwith the tectonic structure of the region.
dc.relation.referencesenGeological Journal. 2. 66–72. (in Ukrainian).
dc.relation.referencesenRudko, G. I. (1991).Geodynamics and forecast of
dc.relation.referencesendangerous geological processes of the Carpathian
dc.relation.referencesenregion: Abstract. dis. Dr. Geol.-Mineral. Science: 04.0.07. Inst. Sciences of the National Academy
dc.relation.referencesenof Sciences of Ukraine. 65 p.. (in Russian).
dc.relation.referencesenSheko, A. I., Postoev G. P., & Goryainov N. I. (1982).
dc.relation.referencesenStudy of the regime of landslide processes
dc.relation.referencesenTextbook. Nedra, 255 p. (in Russian).
dc.relation.referencesenSheko, A. I., Postoev, G. P., Krupoderov, V. S.,
dc.relation.referencesenDyakonova, V. I., Malneva, I. V., Parfenov, S. I.,
dc.relation.referencesenBondarenko, A. A., & Kruglova, L. V. (1999).
dc.relation.referencesenMethodical recommendations for compiling longterm forecasts of exogenous geological processes
dc.relation.referencesenin the system of state monitoring of the geological
dc.relation.referencesenenvironment. Textbook. VSEGINGEO, 78 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenSherman, S. I., Bornyakov, S. A., & Buddo, V. Yu.
dc.relation.referencesen(1983). Areas of dynamic influence of faults
dc.relation.referencesen(simulation results). Textbook. Nauka, 110 p. (in
dc.relation.referencesenRussian).
dc.relation.referencesenShtohryn, L., Kasiyanchuk, D., & Kuzmenko, E.
dc.relation.referencesen(2020). The problem of long-term prediction of
dc.relation.referencesenlandslide processes within the Transcarpatian inner
dc.relation.referencesendepression of the Carpatian region of Ukraine.
dc.relation.referencesenCarpathian Journal of Earth and Environmental
dc.relation.referencesenSciences, 15(1), 157–166.
dc.relation.referencesenState geological map of Ukraine scale 1: 200000. (2003),
dc.relation.referencesensheets M-34-XXIX (Snina), M-34-XXXV
dc.relation.referencesen(Uzhhorod), L-34-V (Satu Mare). Ministry of
dc.relation.referencesenEcology and Natural Resources of Ukraine,
dc.relation.referencesenState Geological Enterprise "Zakhidukrgeologiya", 96 p.
dc.relation.referencesenSungchan Choi, In-Chang Ryu, Young-Cheol Lee, &
dc.relation.referencesenYujin Son. (2020). Gravity and magnetic field
dc.relation.referenceseninterpretation to detect deep buried paleobasinal
dc.relation.referencesenfault lines contributing to intraplate earthquakes:
dc.relation.referencesena case study from Pohang Basin, SE Korea.
dc.relation.referencesenGeophysical Journal International, 220(1), 490-500. URL https://ui.adsabs.harvard.edu/abs/2020GeoJI.220..490C/abstract.
dc.relation.referencesenTyapkin, O. K. (2002). The use of gravity and
dc.relation.referencesenmagnetic exploration in environmental research.
dc.relation.referencesenGeophysical Journal. 24(2). 71–78. (in Russian).
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S0264370711001013
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1674984715000208
dc.relation.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1217/1/012031/pdf
dc.relation.urihttps://ui.adsabs.harvard.edu/abs/2020GeoJI.220..490C/abstract
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2021
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Shtohryn Liudmyla, Anikeyev Sergiy, Kuzmenko Eduard, Bagriy Sergiy
dc.subjectзсув
dc.subjectтектонічна зона
dc.subjectрозломи
dc.subjectлітолого-фаціальний склад
dc.subjectлокальні аномалії гравітаційних і магнітних полів
dc.subjectlandslide
dc.subjecttectonic zone
dc.subjectfaults
dc.subjectlithological-facies composition
dc.subjectlocal anomalies of gravitational and magnetic fields
dc.subject.udc550.83
dc.titleReflection of the activity of landslide processes in the regional gravitational and magnetic fields (on the example of the Transcarpathian region).
dc.title.alternativeВідображення активності зсувних процесів у регіональних гравітаційному та магнітному (на прикладі Закарпатської області)
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021n1_30__Shtohryn_L-Reflection_of_the_activity_65-77.pdf
Size:
849.31 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021n1_30__Shtohryn_L-Reflection_of_the_activity_65-77__COVER.png
Size:
600.31 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: