Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix
dc.citation.epage | 204 | |
dc.citation.issue | 2 | |
dc.citation.spage | 198 | |
dc.contributor.affiliation | Iv. Javakhishvili Tbilisi State University | |
dc.contributor.author | Mukbaniani, Omari | |
dc.contributor.author | Aneli, Jimsher | |
dc.contributor.author | Tatrishvili, Tamara | |
dc.contributor.author | Markarashvili, Eliza | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:11Z | |
dc.date.available | 2024-01-09T10:19:11Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Досліджено реакції гідросилювання 2,4,6,8-тетрагідро-2,4,6,8-тетраметилциклотетрасилоксана (D4H) з 2,2,3,3,4,4,5,5-октафлуоропентил акрилатом у співвідношенні 1:4,2 в присутності платинового каталізатора и одержано відповідний адукт (D4R). В присутності безводного гідроксиду калию проведено полімеризацію D4R, внаслідок чого отримано відповідний комб-полімер з бічними групами 2,2,3,3,4,4,5,5-октафлуоропентил пропіонату. Синтезований продукт та полімери проаналізовано за допомогою методів Фур‘є-спектроскопії, 1H, 13C і 29Si спектроскопії. Тверді полімер-електролитні мембрани одержані за допомогою золь-гель реакцій полімерів з тетраетоксисиланом, допованим трифлуорометансульфонатом літію (трифлат) та біс(трифлуорометансульфонил)імідом літію. Встановлено, що електропровідність полімер-електролітних мембран за кімнатної температури знаходиться в межах (1,9•10-6)–5,9•10-10 См/см. | |
dc.description.abstract | Hydrosilylation reactions of 2,4,6,8-tetrahydro-2,4,6,8-tetramethylcyclotetrasiloxane (D4H) with 2,2,3,3,4,4,5,5-octafluoropentyl acrylate at 1:4.2 ratio of initial compounds catalysed by platinum catalysts have been studied and corresponding adduct D4 R' has been obtained. Ring opening polymerization of D4 R in the presence of dry potassium hydroxide has been carried out and comb-type polymers with 2,2,3,3,4,4,5,5-octafluoropentyl propionate side groups have been obtained. The synthesized product D4 R and polymers were analyzed by FTIR, 1H, 13C, and 29Si NMR spectroscopy. The solid polymer electrolyte membranes have been obtained via sol-gel reactions of polymers with tetraethoxysilane doped with lithium trifluoromethylsulfonate (triflat) and lithium bis(trifluorosulfonyl)imide. It has been found that the electric conductivity of the polymer electrolyte membranes at room temperature changes in the range of (1.9·10-6) – (5.9·10-10) S·cm -1. | |
dc.format.extent | 198-204 | |
dc.format.pages | 7 | |
dc.identifier.citation | Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix / Omari Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 198–204. | |
dc.identifier.citationen | Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix / Omari Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 198–204. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.198 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60727 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Di Noto V., Lavina S., Giffin G. et al.: Electrochim. Acta, 2011, 57, 4. https://doi.org/10.1016/j.electacta.2011.08.048 | |
dc.relation.references | [2] Armand M.: Solid State Ionics, 1983, 9-10, 745. https://doi.org/10.1016/0167-2738(83)90083-8 | |
dc.relation.references | [3] Muldoon J., Bucur C., Boaretto N. et al.: Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966 | |
dc.relation.references | [4] Baudry P., Lascaud S., Majastre H., Bloch D.: J. Power Sources, 1997, 68, 432. https://doi.org/10.1016/S0378-7753(97)02646-3 | |
dc.relation.references | [5] Kerr J.: Polymeric Electrolytes: an Overview [in:] Nazri G., Pistoia G. (Eds.), Lithium Batteries. Springer US, Boston, MA 2003, 575-622. | |
dc.relation.references | [6] Sun C., Liu J., Gong Y. et al.: Nano Energy, 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028 | |
dc.relation.references | [7] Goodenough J., Kim Y.: Chem. Mater., 2010, 22, 587. https://doi.org/10.1021/cm901452z | |
dc.relation.references | [8] Yue L., Ma J., Zhang J. et al.: Energy Storage Mater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003 | |
dc.relation.references | [9] Ben Youcef H., Garcia-Calvo O., Lago N. et al.: Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122 | |
dc.relation.references | [10] Kang Y., Lee W., Hack Suh D., Lee C.: J. Power Sources, 2003, 119-121, 448e. https://doi.org/10.1016/S0378-7753(03)00189-7 | |
dc.relation.references | [11] Nugent J., Moganty S., Archer L.: Adv. Mater., 2010, 22, 3677. https://doi.org/10.1002/adma.201000898 | |
dc.relation.references | [12] Saikia D., Wu H., Lin C. et al.: Polymer, 2012, 53, 6008. https://doi.org/10.1016/j.polymer.2012.11.012 | |
dc.relation.references | [13] Pan Y., Saikia D., Fang J. et al.: RSC Adv., 2014, 4, 13293. https://doi.org/10.1039/C3RA47695B | |
dc.relation.references | [14] Chu Y., Liu Z., Saikia D. et al.: Ionics, 2015, 21, 2523. https://doi.org/10.1007/s11581-015-1425-z | |
dc.relation.references | [15] Yuan W., Shen T., Liu X., Ren J.: Mater. Lett., 2013, 111, 9. https://doi.org/10.1016/j.matlet.2013.08.062 | |
dc.relation.references | [16] Iwahara T., Kusakabe M., Chiba M., Yonezawa K.: J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023 | |
dc.relation.references | [17] https://en.wikipedia.org/wiki/Infrared | |
dc.relation.references | [18] Socrates G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley&Sons 2001. | |
dc.relation.references | [19] Stuart B.: Infrared Spectroscopy: Fundamentals and Applications. John Wiley&Sons 2004. | |
dc.relation.references | [20] Zhang L., Zhang Z., Harring S. et al.: J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/B806290K | |
dc.relation.references | [21] Ziman J.: Principles of the Theory of Solids. Cambridge University Press 1964. | |
dc.relation.referencesen | [1] Di Noto V., Lavina S., Giffin G. et al., Electrochim. Acta, 2011, 57, 4. https://doi.org/10.1016/j.electacta.2011.08.048 | |
dc.relation.referencesen | [2] Armand M., Solid State Ionics, 1983, 9-10, 745. https://doi.org/10.1016/0167-2738(83)90083-8 | |
dc.relation.referencesen | [3] Muldoon J., Bucur C., Boaretto N. et al., Polym. Rev., 2015, 55, 208. https://doi.org/10.1080/15583724.2015.1011966 | |
dc.relation.referencesen | [4] Baudry P., Lascaud S., Majastre H., Bloch D., J. Power Sources, 1997, 68, 432. https://doi.org/10.1016/S0378-7753(97)02646-3 | |
dc.relation.referencesen | [5] Kerr J., Polymeric Electrolytes: an Overview [in:] Nazri G., Pistoia G. (Eds.), Lithium Batteries. Springer US, Boston, MA 2003, 575-622. | |
dc.relation.referencesen | [6] Sun C., Liu J., Gong Y. et al., Nano Energy, 2017, 33, 363. https://doi.org/10.1016/j.nanoen.2017.01.028 | |
dc.relation.referencesen | [7] Goodenough J., Kim Y., Chem. Mater., 2010, 22, 587. https://doi.org/10.1021/cm901452z | |
dc.relation.referencesen | [8] Yue L., Ma J., Zhang J. et al., Energy Storage Mater., 2016, 5, 139. https://doi.org/10.1016/j.ensm.2016.07.003 | |
dc.relation.referencesen | [9] Ben Youcef H., Garcia-Calvo O., Lago N. et al., Electrochim. Acta, 2016, 220, 587. https://doi.org/10.1016/j.electacta.2016.10.122 | |
dc.relation.referencesen | [10] Kang Y., Lee W., Hack Suh D., Lee C., J. Power Sources, 2003, 119-121, 448e. https://doi.org/10.1016/S0378-7753(03)00189-7 | |
dc.relation.referencesen | [11] Nugent J., Moganty S., Archer L., Adv. Mater., 2010, 22, 3677. https://doi.org/10.1002/adma.201000898 | |
dc.relation.referencesen | [12] Saikia D., Wu H., Lin C. et al., Polymer, 2012, 53, 6008. https://doi.org/10.1016/j.polymer.2012.11.012 | |
dc.relation.referencesen | [13] Pan Y., Saikia D., Fang J. et al., RSC Adv., 2014, 4, 13293. https://doi.org/10.1039/P.3RA47695B | |
dc.relation.referencesen | [14] Chu Y., Liu Z., Saikia D. et al., Ionics, 2015, 21, 2523. https://doi.org/10.1007/s11581-015-1425-z | |
dc.relation.referencesen | [15] Yuan W., Shen T., Liu X., Ren J., Mater. Lett., 2013, 111, 9. https://doi.org/10.1016/j.matlet.2013.08.062 | |
dc.relation.referencesen | [16] Iwahara T., Kusakabe M., Chiba M., Yonezawa K., J. Polym. Sci. A, 1993, 31, 2617. https://doi.org/10.1002/pola.1993.080311023 | |
dc.relation.referencesen | [17] https://en.wikipedia.org/wiki/Infrared | |
dc.relation.referencesen | [18] Socrates G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley&Sons 2001. | |
dc.relation.referencesen | [19] Stuart B., Infrared Spectroscopy: Fundamentals and Applications. John Wiley&Sons 2004. | |
dc.relation.referencesen | [20] Zhang L., Zhang Z., Harring S. et al., J. Mater. Chem., 2008, 18, 3713. https://doi.org/10.1039/B806290K | |
dc.relation.referencesen | [21] Ziman J., Principles of the Theory of Solids. Cambridge University Press 1964. | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2011.08.048 | |
dc.relation.uri | https://doi.org/10.1016/0167-2738(83)90083-8 | |
dc.relation.uri | https://doi.org/10.1080/15583724.2015.1011966 | |
dc.relation.uri | https://doi.org/10.1016/S0378-7753(97)02646-3 | |
dc.relation.uri | https://doi.org/10.1016/j.nanoen.2017.01.028 | |
dc.relation.uri | https://doi.org/10.1021/cm901452z | |
dc.relation.uri | https://doi.org/10.1016/j.ensm.2016.07.003 | |
dc.relation.uri | https://doi.org/10.1016/j.electacta.2016.10.122 | |
dc.relation.uri | https://doi.org/10.1016/S0378-7753(03)00189-7 | |
dc.relation.uri | https://doi.org/10.1002/adma.201000898 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2012.11.012 | |
dc.relation.uri | https://doi.org/10.1039/C3RA47695B | |
dc.relation.uri | https://doi.org/10.1007/s11581-015-1425-z | |
dc.relation.uri | https://doi.org/10.1016/j.matlet.2013.08.062 | |
dc.relation.uri | https://doi.org/10.1002/pola.1993.080311023 | |
dc.relation.uri | https://en.wikipedia.org/wiki/Infrared | |
dc.relation.uri | https://doi.org/10.1039/B806290K | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Mukbaniani O., Aneli J., Tatrishvili T., Markarashvili E., 2021 | |
dc.subject | гідросилювання | |
dc.subject | полімеризація | |
dc.subject | золь-гель реакції | |
dc.subject | тверді полімер-електролитні мембраны | |
dc.subject | спектроскопія | |
dc.subject | йонопровідність | |
dc.subject | hydrosilylation | |
dc.subject | polymerization | |
dc.subject | sol-gel reactions | |
dc.subject | polymer electrolyte membrane | |
dc.subject | spectroscopy | |
dc.subject | ion-conductivity | |
dc.title | Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix | |
dc.title.alternative | Тверді полімер-електролітні мембрани на основі флуоросилоксанової матриці | |
dc.type | Article |
Files
License bundle
1 - 1 of 1